Australian Nuclear Science & Technology Organisation Simulating radiation damage in quaternary oxides Bronwyn Thomas, Nigel Marks, Bruce Begg, René Corrales, Ram Devanathan Synroc-type titanates for radioactive waste • • • • • Composed of titanium-oxide mineral phases Based on TiO6 octahedral framework Many different cations, varying valences & sizes Charge-compensating defects Varying radiation resistance –Composition –Structure –Defects (Sr1-3x/2Lax)TiO3 perovskite • Charge compensation via cation vacancies, one vacancy per two La ions • Maximum radiation resistance at x ≈ 0.2 • Phase transitions at x ≈ 0.2 (tilt) and 0.55 (layer) • Short-range order observed from x ≈ 0.25 • How do we simulate partially disordered solids? • What causes the radiation resistance anomaly? –Cation vacancies? –Ordering? Challenges in simulating complex oxides • • • • Many different cation sublattices Partially ionic, partially covalent Oxygen is a problem… Previous work in oxides: –14 displacement cascade studies in oxides since 2000: ZrSiO4 (5), SiO2 (3), UO2 (2), CaZrTi2O7 (2), La2Zr2O7, Gd2(Ti,Zr)2O7. –A small number of other studies on threshold displacement energies –A large number of studies on defect formation and migration –Many inadequate models… Strategy TiO2 SrTiO3 (Sr1-3x/2Lax)TiO3 Model Applications • Study TiO2 rutile: –Model development; behaviour of titanate systems –Radiation resistance • Develop models for (Sr,La)TiO3 • Study short-range ordering as a function of La concentration • Study radiation resistance as a function of La concentration and short-range order Rutile TiO2 Lessons from rutile • Ockham’s razor: the simplest possible model to describe the broadest range of situations. kqiq j Cij V r Aij exp rij / r ij 6 rij rij • Use partial charge (not formal or variable) –Determine using ab initio data (Mulliken analysis) • Don’t include atomic polarisation (shell model) –Added complexity for little gain • No dispersion terms • No cation-cation Born-Mayer terms • Simplest: Two parameters (A, r) for each atom type, plus charges. Perovskite (Sr,La)TiO3 Vacancy SrTiO3 Sr0.625La0.25TiO3 Model development for SrTiO3 • Charges –ab initio (CRYSTAL, GGA, Mulliken) –Sr: 1.84, Ti: 2.36, O: -1.40 • Cubic: high symmetry –3 experimental parameters (a, c11, c12 = c44) –6 Born-Mayer parameters –Not enough data! Fit is not unique • Other data?! –Binary oxides? Other structures? Ab initio data? –Need to separate Sr-O and Ti-O interactions Ruddlesden-Popper Sr3Ti2O7 2 layers SrTiO3 + 1 layer SrO • Unique fit (GULP) • Good elastic & thermodynamic properties Model development for (Sr,La)TiO3 • Fit La-O model (2 params) to (Sr,La)TiO3 data –Data: Experimental crystallographic structures, volume varies linearly with La content • Problems: –Atomic-level structures unknown; local cation ordering increases with La concentration –“Random” cation configurations have wide range of energies and volumes • Solution: Ab initio calculations of (Sr,La)TiO3 supercell configurations (VASP) –Fit La-O model to La=0.25 structure data (6) –Test La-O model using La=0.5 data (16) (Sr0.625La0.25)TiO3 supercells (Sr0.25La0.5)TiO3 supercells Relative energies (La=0.5) Summary of model development • For TiO2 –Simplified functional form –Validated Mulliken charges • For SrTiO3 –Computed Sr, Ti and O ab initio Mulliken charges –Fitted Sr-O, Ti-O and O-O pair terms (6 parameters) to experimental data (SrTiO3 and Sr3Ti2O7) • For (Sr,La)TiO3 –Fitted La-O pair term to ab initio data for 6 Sr5La2Ti8O24 configurations –Tested against 16 Sr2La4Ti8O24 configurations –Checked Mulliken charge for La (not a parameter) Radiation damage in rutile and SrTiO3 • Threshold displacement energies (< 100 eV) –Molecular dynamics (DL_POLY) –SRIM: binary collision approximation • Defect structures, energies and migration • Displacement cascades (1 - 10 keV) 50 eV displacement in rutile, 160 K Ti O Radiation damage in rutile Threshold Displacement Energy ± 5 eV (160 K) (001) (100) (110) (101) (111) O 65 30 55 30 35 Ti 75 110 95 105 115 • Anisotropy, focus/defocus collisions • Implications for SRIM calculations –Defect formation –Recombination distance • Low energy O interstitial migration mechanisms –split-interstitials & channel sites Oxygen migration in rutile @ 800 K Ti O 5 keV displacement cascade in rutile Radiation damage in SrTiO3 Threshold Displacement Energy ± 10 eV (300 K) (100) (110) (111) O 30 40 40 Sr 30 60 70 Ti > 110 80 > 110 • Channeling important for Sr • Oxygen and strontium interstitial migration energies higher 5 keV displacement cascade in SrTiO3 Sr Ti O Radiation damage in (Sr,La)TiO3 (future work) • Monte Carlo simulation of short-range order • Oxygen interstitial/vacancy migration vs La content –Effects of cation vacancies –Effects of short-range order • Displacement cascades • Why maximum radiation resistance at x ≈ 0.2?
© Copyright 2026 Paperzz