Q.No: 1 (a)
King Saud University
Department of Mathematics
M-203[Final Examination]
(Differential and Integral Calculus)
(First-Semester 1428/29)
Max.Marks:50
Marking Scheme: Q.No:1[3+4+5+4], Q.No2:[4+4+4+4], Q.No:3[4+4+4+6]
Discuss the convergence of the sequence { ln( 2n) ln( 2n 1)}.
2n
Lim[ln( 2n) ln( 2n 1)] Lim ln
Limln( 1) 0 .
n
n
2 n 1 n
Solution:
(b)
1
Determine whether the series
n 1
n
n
2n 1
2
is absolutely convergent,
Conditional ly convergent, or divergent.
1
1
and
is divergent
2n
2n 1 2n
n
n
is divergent.
1
2
2n 1
n 1
Solution:
Since
n
2
Let us now try Alternating series test:
n
Hence
(c)
n
0,
2n 1
x
(ii) f ( x)
, f / ( x) 0 for x 1.
2
2x 1
is conditionally convergent.
1n 2n
2n 1
n 1
(i) Lim
2
Find the interval of convergence and radius of convergence of the power
Series
1
n 1
n
1
( x 1) n .
n
n3
( x 1) n1
n3n
1
1
Lim x 1 x 1
n
1
n
n (n 1)3
n 3
3
( x 1)
1
x 1 1 x 1 3
For convergence
3
3 x 1 3
2 x 4 .
Check convergence at x 2 ,
1
1
n 1
2n
n
n
1
(
2
1
)
1
(
3
)
=
(Divergent)
n
n
n3
n3
n 1
n 1
n 1 n
Check convergence at x 4
n
n 3
n 1
n 1
n
1
(
4
1
)
1
1
(Convergent)
n
n
n
n3
n3
n 1
Therefore Interval of convergence is (2,4]. Radius of Convergence =3.
Solution:
(d)
Lim
Find Maclaurin’s series for the function f ( x)
1
1 x 2
.
Time:3hrs
f ( x)
Solution:
1
f (0) 1
1 x 2
2
f ( x) 1 x
f / ( x) (2)(1 x ) 3 (1) f / (0) 2
f // ( x) (2)(3)(1 x ) 4 f // (0) 6
f /// ( x) (2)(3)(4)(1 x ) 5 f /// (0) 24
f iv ( x) (2)(3)(4)( 5)(1 x ) 6 f /// (0) 120
and so on………….
6 2 24 3 120 5
x
x
x
2!
3!
4!
f ( x) 1 2 x
Therefore
Q.No: 2 (a)
2
0
Solution:
2
2
Cos( y
0
2
2 y
)dydx
x
0
Cos( y )dxdy
2
2
Cos( y
Sketch the region of integration and evaluate the integral
)dydx .
x
2
yCos( y
0
2
2
)dy
0
1
1
[ Sin Sin (0)] .
2
2
2
(b)
Find the area of the surface of the portion of paraboloid z x 2 y 2 that
Is cut off by the plane z 1.
Solution:
Surface Area=
1 ( f x ) 2 ( f y ) 2 dA.
R
Here z x y f ( x, y) f x ( x, y ) 2 x & f y ( x, y ) 2 y .
2
2
1 (2 x) 2 (2 y ) 2 dA. 1 4( x 2 y 2 )dA .
R
R
2
0
(c )
1
6
0
5
1
1
1 4r rdrd 2 1 4r 2
12
0
2
5 1.
A lamina has the shape of the region bounded by y a 2 x 2 and the
density is directly proportional to the distance from x-axis. Find the mass of the
lamina.
Solution:
Mass of a lamina=
a
a2 x2
a
0
( x, y)dA
R
a
k
kydydx a 2 x 2 dx
2 a
a
k a 2
x3
2 a x 2 dx k a 2 x
3 0
2 0
2
ka3 .
3
4
(d)
Evaluate the integral
0
Solution:
2
2
16 x 2 32 x y
0
x 2 y 2 z 2 dzdydx .
x2 y2
On converting this integral into spherical we get:
2
4
32
2
4
32
Sinddd =
Sinddd
0
0
0
0
0
2
2
0
1
4 4 2 Sindd
2
0
4
4
0
2
1
2
256 Cos 0 4 d 256
1 d 37.49
2 0
0
On converting the given integral into Cylindrical we get:
4
0
Q.No: 3 (a)
2
2
16 x 2 32 x y
0
x y z dzdydx
2
2
2
x2 y2
0
Show that the integral
ye
xy
32 r2
2 4
0
r 2 z 2 rdzdrd
r
dx ( xe xy 2 y )dy is independent of path
C
by finding the potential function.
Solution:
We need to show F ( x, y ) f x ( x, y) i f y ( x, y) j
F ( x, y) ye xy i ( xe xy 2 y) j f x ( x, y) i f y ( x, y) j
f x ( x, y ) ye xy
………………………..(1)
f y ( x, y) xe 2 y …………………….(2)
Integrating (1) with respect to x and (2) with respect to y , we get
1
f ( x, y ) ye xy g ( y )......................(3)
y
1
f ( x, y ) xe xy y 2 h( y )...............(4)
x
xy
Comparing (3) and (4), we get
g ( y ) y 2 h( y )
Therefore f ( x, y) e xy y 2 c which is a potential function.
(b)
Evaluate the integral
y
2
dx 3xydy , where C is the boundary of the region
C
that lies inside the circle x 2 y 2 4 and outside the circle x 2 y 2 1 in
upper half plane.
Solution:
We apply Green’s theorem and we have
(3xy) ( y 2 )
2
y
dx
3
xydy
R dx dy dA R (3 y 2 y)dA R ydA
C
2
r3
7
14
rSin ( )rdrd Sin ( )d Sin ( )d
3 1
30
3
0 1
0
(c )
Use Stokes’s theorem to evaluate
2
F dr , where C is the boundary of the
C
Portion of z 4 x y above the xy-plane oriented upward and
2
2
F ( x, y , z ) ( x 2 e x y ) i
y2 1 j z3 k .
Solution:
i
curl F
x
2 x
x e y
We find
k
z
z 3
j
y
y2 1
i (0) j (0) k (1) ( M 1 i N1 j P1 k )
2
2
z 4 x y g ( x, y) g x 2 x, g y 2 y
curl F n dS ( M 1 g x N1 g x P1 )dA (0 0 1)dA dA
R
R
S
2
2
2
2
0
0
0
0
(d)
dA rdrd 4
Verify the divergence theorem by evaluating both the surface integral and the
Triple integral for the function F ( x, y, z ) x i y j z k , and the surface
S which is the solid bounded by the graphs of z x 2 y 2 and z 4.
Solution:
M N z
F n dS
dV .......(1)
y z
x
Q
Here we have to prove
S
L.H.S=R.H.S…………………………………………(1)
First we calculate L.H.S. of (1) i.e.
Q
M N z
dA. (1 1 1)dV
y z
x
Q
dV
Q
Now we evaluate the L.H.S. of (1) i.e.
2
2
4
0
0
r2
rdzdrd 8
F n dS
S
The surface S is divided into two parts namely:
S1: Plane z 4 g1 ( x, y) this portion has upper normal vector
S2: Paraboloid z x 2 y 2 g 2 ( x, y) this portion has lower normal.
Hence,
F n dS = F n dS1 F n dS 2
S1
S
S2
( Mg 1x Ng1 y P)dA Mg 2 x Ng 2 y P) dA
Rxy
Rxy
( Mg 1x Ng1 y P)dA Mg 2 x Ng 2 y P) dA
Rxy
Rxy
( Mg 1x Ng1 y P)dA Mg 2 x Ng 2 y P) dA
Rxy
Rxy
( x(0) ( y)(0) z )dA 2 x 2 2 y 2 z ) dA
Rxy
Rxy
zdA (2 x 2 2 y 2 x 2 y 2 )dA
Rxy
Rxy
2
2
0
16
0
rdrd
( x 2 3 y 2 ) dA
Rxy
2
2
0
0
(r 2 Cos 2 3r 2 Sin 2 )rdrd 16 8 8
© Copyright 2026 Paperzz