BZH Computational Study of Escherichia coli Signal Recognition Particle GTPases Kelly Elkins GPBM 2002: June 25, 2002 Why Modelling? GTACTTACCCTAGTAC CATGAATGGGATCATG Gene ? Structure Function Outline What is the signal recognition particle? …proteins necessary for the proper export/transport of secretory and membrane proteins. A computational study of a protein-protein complex: Build a model of Ffh Evaluate proposed SRP:SR interaction model Is model valid in an apo-form? with Mg2+ bound? with GTP-Mg2+? Other possible models? Conclusions Signal Recognition Particle Universally conserved system for protein trafficking In humans, 6 proteins and 1 RNA In E. coli: 2 proteins: SRP and receptor; 1 RNA: 4.5S RNA Both are GTPases Ffh (SRP) 48 kDa GTPase protein FtsY (receptor) GTPase protein 1FTS.pdb- G. Montoya, et al. (1997) Nature, 385, 365-368. 1DUL.pdb- R.T. Batey, et al. (2000) Science, 287, 1232-1239. E. coli Ffh SRP model Comparative Modelling Protein Organism Percent Identity Ffh Escherichia coli 100 Ffh SRP54 FtsY Thermus aquaticus Acidianus ambivalens (Desulfurolobus ambivalens) (archaebacteria) Escherichia coli 46 .pdb Structure M domain in 1DUL with 4.5S RNA, homology model KFFH 1NG1, GDP-Mg2+, NG domain 2NG1, 3NG1, 1FFH, 2FFH, 1JPJ, GDP, NG domain apo, NG domain apo, NG domain, apo, whole NG+M domain, A48T GMPPNP, NG-domain 1J8M, apo, NG domain 35 33 1FTS, apo, NG domain pdb structures: www.rcsb.org/pdb/ Ffh Model Alignment used for E. coli Ffh model of NG-domain Swiss Model 1) First Approach Mode- templates: -1JPJ.pdb (T. aquaticus Ffh NG fragment bound GMPPNP) -1FTS.pdb (E. coli apoFtsY NG fragment) -1NG1.pdb (T. aquaticus Ffh NG fragment bound GDP-Mg2+) -1J8M.pdb (A. ambivalens apo-Ffh NG fragment) 2) 3) Optimize Project Mode- adjusted sequence alignment with Swiss PDB Viewer to retain secondary structure elements -Same templates Checked Model with Procheck and Whatif E. A. T. T. E. coli Ffh KFFH ambivalens SRP54 1J8M aquaticus Ffh 1JPJ aquaticus Ffh 1NG1 coli FtsY 1FTS 5 3 1 1 201 LT LL MFQQ----LS MFQQ----LS RSLL----KT E. A. T. T. E. coli Ffh KFFH ambivalens SRP54 1J8M aquaticus Ffh 1JPJ aquaticus Ffh 1NG1 coli FtsY 1FTS 47 45 47 47 244 VVR-FINRVK LVFSLTNKIK VARDFVERVR VARDFVERVR TTRKIITNLT E. A. T. T. E. coli Ffh KFFH ambivalens SRP54 1J8M aquaticus Ffh 1JPJ aquaticus Ffh 1NG1 coli FtsY 1FTS 95 94 95 95 288 EKAVGHEVNK SLTPGQEFVK ERLKNEKPPT YIERREWFIK EEALGKQVLE SLTPAEVILA EEALGKQVLE SLTPAEVILA EGASRKQLR- ---DAEALYG |--P-loop-| |--------G1--------| AAQPP-AVVL MAGLQGAGKT TSVGKLGKFL PDKIP-YVIM LVGVQGTGKT TTAGKLAYFY LKDR--NLWF LVGLQGSGKT TTAAKLALYY LK-DR-NLWF LVGLQGSGKT TTAAKLALYY VEGKAPFVIL MVGVNGVGKT TTIGKLARQF E. A. T. T. E. coli Ffh KFFH ambivalens SRP54 1J8M aquaticus Ffh 1JPJ aquaticus Ffh 1NG1 coli FtsY 1FTS 144 142 142 142 337 ---| IKQLETLAEQ LEQLQQLGQQ REQLRLLGEK REQLRLLGEK VEQLQVWGQR VGVDFFPSDV IGVPVYGEPG VGVPVLEVMD VGVPVLEVMD NNIPVIAQH- E. A. T. T. E. coli Ffh KFFH ambivalens SRP54 1J8M aquaticus Ffh 1JPJ aquaticus Ffh 1NG1 coli FtsY 1FTS 191 189 189 189 384 -----| AG--RLHVDE AGRHGYGEEA AGRLQID--AGRLQID--AGRLQNK--- AMMDEI-KQV ALLEEM-KNI EPLMGELARL EPLMGELARL SHLMEELKKI E. A. T. T. E. coli Ffh KFFH ambivalens SRP54 1J8M aquaticus Ffh 1JPJ aquaticus Ffh 1NG1 coli FtsY 1FTS 229 229 227 227 431 E. A. T. T. E. coli Ffh KFFH ambivalens SRP54 1J8M aquaticus Ffh 1JPJ aquaticus Ffh 1NG1 coli FtsY 1FTS 278 278 276 276 477 DRLSRTLRNI DNLRDTVRKF ARLQEAIGRL ARLQEAIGRL KENLGSGFIS SGRGRLTEDN LTGSSSYDKA RGRGRITEED RGRGRITEED LFRG--KKID ‘ALLEADV’ VKDTLREVRM ALLEADVALP VEDFIKELQK SLISADVNVK LKATLREIRR ALMDADVNLE LKATLREIRR ALMDADVNLE DDLFEELEEQ -LLIADVGVE IVRNELVAAM IVYDELSNLF TVYEALKEAL TVYEALKEAL LLKEEMGE-- GEEN-QTLNL GGDK-EPKVI GGE--ARLPV GGEA--RLPV ILAKVDEPLN REKHKKKVLV KKK-GFKVGL KGK-GRRPLL KGK-GRRPLL EQQ-GKSVML |---G2--VSADVYRPAA VGADVYRPAA VAADTQRPAA VAADTQRPAA AAGDTFRAAA GQK-PVDIVN EKD-VVGIAK GES--PESIR GES--PESIR TGADSASVIF AALK-EAKLK RGVE-KFLSE RRVEEKA-RL RRVEE-KARL DAIQ-AAKAR |--G3-F-YDVLLVDT K-MEIIIVDT EARDLILVDT EARDLILVDT N-IDVLIADT HASIN----YEAIK----KEVLG----KEVLG----VRVMKKLDVE -PVETLFVVD -PDEVTLVID -PDEVLLVLD -PDEVLLVLD APHEVMLTID AMTGQ---DA ASIGQ---KA AMTGQ---EA AMTGQ---EA ASTGQNAVSQ ANTAKAFNEA YDLASKFNQA LSVARAFDEK LSVARAFDEK AKLFHE---A |--------G4--------| LPLTGVVLTK VDGDARGGAA LSIRHIT-GK SKIGTIIITK MDGTAKGGGA LSAVAAT-GA VGVTGLVLTK LDGD-ARGGA ALSARHVTGK VGVTGLVLTK LDGD-ARGGA ALSARHVTGK VGLTGITLTK LDGTAKGGV- IFSVADQFGI |closing PIKFLGVGEK TIKFIGTGEK PIYFAGVSEK PIYFAGVSEK PIRYIGVGER loop| TEALEPFHPD IDELEVFNPR PEGLEPFYPE PEGLEPFYPE IEDLRPFKAD RIASR--ILG RFVAR--L-H RLAGR--ILG RLAGRILG-M DFIEAL--FA MGD HHH M---R-- 298 297 294 294 495 1FTS.pdb- G. Montoya, et al. (1997) Nature, 385, 365-368. 1NG1.pdb- D.M. Freymann, et al. (1999) Nature Struct. Biol., 6, 793-801. 1JPJ.pdb- S. Padmanabhan, & D.M. Freymann, (2001) Structure (Camb.), 9, 859-867. 1J8M.pdb- G. Montoya, et al. (2000) Structure, 8, 515-525. Ffh Model Superimposition of the Ffh model on the 4 templates RMSD: 1NG1- 2.93 Angstroms 1J8M- 0.96 Angstroms 1JPJ- 3.04 Angstroms 1FTS- 2.94 Angstroms Evaluation of a Proposed Protein-Protein Interaction Model Proposed Model: Ffh-FtsY complex superimposed on 1N2C.pdb (nitrogenase iron protein) by structural similarity (Montoya, G., te Kaat, K., Moll, R., Schaefer, G., & Sinning, I. (2000). Structure, 8, 515-525.) Calculated the superimposed proposed model- sup2pdbs program (R.Gabdoulline)Ca superimposition GTP-Mg2+ Docking Superimposition 42 GTP molecules- Protein Data Bank (23 Jan. 2002) Superimposed GTPs with superimp program (G.M. Ullmann)like atoms of 2 molecules are superimposed Superimposed all GTPs into Ffh model and FtsY using 1NG1.pdb GDP as template Mg2+ placement according to 1NG1.pdb GDP-Mg2+ structure Energy minimized apo, Mg2+, and GTP-Mg2+ docked forms using AMBER7 Visualize superimposed GTPs using Molsurfer Electrostatics calculations of the complexes using UHBD with CHARMm forcefield parameters (unminimized forms) J.D. Madura, et al. (1994) Biological applications of electrostatic calculations and brownian dynamics simulations. In: “Reviews in Computational Chemistry, Volume V“, Lipkowitz, K.B., & Boyd, D. (Eds.), VCH Publishers, Inc., New York. R.R. Gabdoulline & R.C. Wade, (1997) Biophys. J., 72, 1917-1929. R.R. Gabdoulline & R.C. Wade, (2001) J. Mol. Biol., 306, 1139-1155. R.R. Gabdoulline& R.C. Wade, (1999) TIBS, 24, 285-287. GTP-Mg2+ Docking GTP-Mg2+ docked to Ffh Evaluation of a Proposed Protein-Protein Interaction Model SDA (Simulated Diffusional Association)- ab initio models unrestricted search search restricted to GTP-binding region UHBD calculations- compare electrostatic surfaces, charged regions DALI- propose other homology models (http://www2.ebi.ac.uk/dali/) Energy minimization with AMBER7- relieve bad contacts Evaluation of a Proposed Protein-Protein Interaction Model Hydrophobic patches using Molsurfer Future Work Transform pdb coordinates and rotate according to DALI output to examine proposed alternate homology models with UHBD and Molsurfer Evaluate ab initio models produced by SDA and by a hydrophobic patch pairing Model the M domain of Ffh and the 4.5S RNA into the associated complex Alternative GTP-Mg2+ placement using GRID20 Conclusions We have made a homology model of E. coli Ffh We have docked GTP-Mg2+ to both Ffh and FtsY The energy-minimized Ffh:FtsY complex produced by homology with the nitrogenase iron protein homodimer is not viable, but may need only small adjustments to relieve bad sidechain contacts and to obtain better hydrophobic contacts The electrostatics calculations indicate that the charge landscapes of Ffh and FtsY are very complex and that hydrophobic residues must also mediate complex formation Acknowledgements Rebecca Wade, European Media Laboratory Irmi Sinning, University of Heidelberg Timm Essigke Razif Gabdoulline Ting Wang GTP-binding and Association of the Escherichia coli Signal2 Recognition Particle, Ffh, and its Receptor, FtsY 1* 1 Kelly M. Elkins , Irmgard Sinning , and Rebecca C. Wade BZH Abstract Results The signal recognition particle (SRP) is a universally conserved system for protein trafficking. Many SRPs are GTP-binding proteins. Their crucial role in ensuring that proteins are not misplaced into the wrong cellular location makes them potential targets for drug design. The aim of our work is to derive structural models of the interactions of the SRP and its receptor. This is being done for the SRP system from Escherichia coli, which is much simpler than that found in humans and thus provides a good model system. The E. coli SRP is a ribonucleoprotein complex composed of a 48 kDa GTPase protein and a 4.5 S RNA. While the crystal structure of the E. coli SRP receptor FtsY, also a GTPase, has been solved, the structure of the E. coli SRP protein itself has not. Consequently, we have used comparative modelling techniques to build a model of the E. coli SRP protein, Ffh, 2+ on the basis of SRP structures from other organisms and to dock GTP and Mg into their hypothesized sites on both Ffh and FtsY. These modelled structures are being used to build a model of the active SRP:SRP receptor complex. This model should prove useful in understanding how the components of the SRP interact to direct protein traffic within and out of the cell. Protein Organism Ffh Escherichia coli Ffh Percent Identity 100 Thermus aquaticus SRP54 Acidianus ambivalens (Desulfurolobus ambivalens) (archaebacteria) FtsY Escherichia coli 46 35 33 .pdb Structure M domain in 1DUL with 4.5S RNA, homology model KFFH Ref. (this work) 1NG1, GDP-Mg2+, NG domain (2) 2NG1, GDP, NG domain (2) 3NG1, apo, NG domain (2) 1FFH, apo, NG domain 2FFH, apo, whole NG+M domain, A48T (5) 1JPJ, GMPPNP, NG-domain (3) 1J8M, apo, NG-domain (4) 1FTS, apo, NG domain (1) Table 1: Swiss-Model (http://www.expasy.ch/swissmod/SWISS-MODEL.html) Predict Protein maximum homology alignment summary for E. coli Ffh and bacterial/archaebacterial signal recognition particle proteins and receptors for which crystal structures are known and were used to make the homology model KFFH (red). Colored in blue are the structures used to model/insert the M-domain and 4.5S RNA to KFFH. 2+ Alignment used for E. coli Ffh model of NG-domain E. coli Ffh KFFH A. ambivalens SRP54 1J8M T. aquaticus Ffh 1JPJ T. aquaticus Ffh 1NG1 E. coli FtsY 1FTS E. coli Ffh KFFH A. ambivalens SRP54 1J8M T. aquaticus Ffh 1JPJ T. aquaticus Ffh 1NG1 E. coli FtsY 1FTS E. coli Ffh KFFH A. ambivalens SRP54 1J8M T. aquaticus Ffh 1JPJ T. aquaticus Ffh 1NG1 E. coli FtsY 1FTS Figure 2: GTP-Mg is docked into the E. coli Ffh model. Residues which are within ligating distance E. coli Ffh KFFH are shown, including: Gln108, Gly109, Ala110, A. ambivalens SRP54 1J8M Gly111, Lys112, Thr113, Thr114, Lys118, Arg140, T. aquaticus Ffh 1JPJ Asp189, Lys248, Asp250, & Gly275. T. aquaticus Ffh 1NG1 Make a homology model of the NG-domain of the E. coli SRP, Ffh Calculate pKas of Ffh and FtsY: are there residues where the pKas are shifted? 2+ What roles do these residues play in GTP-Mg binding or protein-protein association? E. coli FtsY 1FTS E. coli Ffh KFFH A. ambivalens SRP54 1J8M T. aquaticus Ffh 1JPJ T. aquaticus Ffh 1NG1 E. coli FtsY 1FTS 2+ Dock GTP-Mg to E. coli Ffh, and its receptor, FtsY Compute the electrostatic potential using the Poisson-Bolzmann equation Dock the two proteins Evaluate the docked complex Evaluate conformational changes Figure 1: Homology model of the NG-domain of the Escherichia coli signal recognition particle Ffh(red trace) superimposed on the templates (blue traces). 1.Montoya, G., Svensson, C., Luirink, J., & Sinning, I. (1997). Crystal structure of the NG domain from the signal recognition particle receptor FtsY. Nature, 385, 365-368. 2.Freymann, D.M., Keenan, R.J., Stroud, R.M., & Walter, P. (1999). Functional changes in the 2+ structure of the SRP GTPase on the binding of GDP and Mg GDP. Nature Struct. Biol., 6, 793-801. 3.Padmanabhan, S., & Freymann, D.M. (2001). The conformation of bound GMPPNP suggests a mechanism for gating the active site of the SRP GTPase. Structure (Camb.), 9, 859-867. 4.Montoya, G., te Kaat, K., Moll, R., Schaefer, G., & Sinning, I. (2000). The crystal structure of the conserved GTPase of SRP54 from the archeon Acidianus ambivalens and its comparison with related structures suggests a model for the SRP:SRP receptor complex. Structure, 8, 515-525. 5.Keenan, R.J., Freymann, D.M., Walter, P., & Stroud, R.M. (1998). Crystal structure of the signal sequence binding subunit of the signal recognition particle. Cell, 94, 181-191. 6.Batey, R.T., Rambo, R.P., Lucast, L., Rha, B., & Doudna, J.A. (2000). Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science, 287, 1232-1239. 7.Demchuk, E. & Wade, R.C. (1996). Improving the continuum dielectric approach to calculating pKas of ionizable groups in proteins. J. Phys. Chem., 100, 17373-17387. 8.Madura, J.D., Davis, M.E., Gilson, M.K., Wade, R.C., Luty, B.A., & McCammon, J.A. (1994). Biological applications of electrostatic calculations and brownian dynamics simulations. In: “Reviews in Computational Chemistry, Volume V“, Lipkowitz, K.B., & Boyd, D. (Eds.), VCH Publishers, Inc., New York. 9.Gabdoulline, R.R. & Wade, R.C. (1997). Simulation of the diffusional association of barnase and barstar. Biophys. J., 72, 1917-1929. 10.Gabdoulline, R.R. & Wade, R.C. (2001). Protein-protein association: investigation of factors influencing association rates by brownian dynamics simulations. J. Mol. Biol., 306, 1139-1155. ‘ALLEADV’ 5 LT DRLSRTLRNI SGRGRLTEDN VKDTLREVRM ALLEADVALP 3 LL DNLRDTVRKF LTGSSSYDKA VEDFIKELQK SLISADVNVK 1 MFQQ----LS ARLQEAIGRL RGRGRITEED LKATLREIRR ALMDADVNLE 1 MFQQ----LS ARLQEAIGRL RGRGRITEED LKATLREIRR ALMDADVNLE 201 RSLL----KT KENLGSGFIS LFRG--KKID DDLFEELEEQ -LLIADVGVE 47 VVR-FINRVK EKAVGHEVNK SLTPGQEFVK IVRNELVAAM GEEN-QTLNL 45 LVFSLTNKIK ERLKNEKPPT YIERREWFIK IVYDELSNLF GGDK-EPKVI 47 VARDFVERVR EEALGKQVLE SLTPAEVILA TVYEALKEAL GGE--ARLPV 47 VARDFVERVR EEALGKQVLE SLTPAEVILA TVYEALKEAL GGEA--RLPV 244 TTRKIITNLT EGASRKQLR- ---DAEALYG LLKEEMGE-- ILAKVDEPLN |--P-loop-| |--------G1--------| |---G2--95 AAQPP-AVVL MAGLQGAGKT TSVGKLGKFL REKHKKKVLV VSADVYRPAA 94 PDKIP-YVIM LVGVQGTGKT TTAGKLAYFY KKK-GFKVGL VGADVYRPAA 95 LKDR--NLWF LVGLQGSGKT TTAAKLALYY KGK-GRRPLL VAADTQRPAA 95 LK-DR-NLWF LVGLQGSGKT TTAAKLALYY KGK-GRRPLL VAADTQRPAA 288 VEGKAPFVIL MVGVNGVGKT TTIGKLARQF EQQ-GKSVML AAGDTFRAAA ---| |--G3-144 IKQLETLAEQ VGVDFFPSDV GQK-PVDIVN AALK-EAKLK F-YDVLLVDT 142 LEQLQQLGQQ IGVPVYGEPG EKD-VVGIAK RGVE-KFLSE K-MEIIIVDT 142 REQLRLLGEK VGVPVLEVMD GES--PESIR RRVEEKA-RL EARDLILVDT 142 REQLRLLGEK VGVPVLEVMD GES--PESIR RRVEE-KARL EARDLILVDT 337 VEQLQVWGQR NNIPVIAQH- TGADSASVIF DAIQ-AAKAR N-IDVLIADT -----| 191 AG--RLHVDE AMMDEI-KQV HASIN----- -PVETLFVVD AMTGQ---DA 189 AGRHGYGEEA ALLEEM-KNI YEAIK----- -PDEVTLVID ASIGQ---KA 189 AGRLQID--- EPLMGELARL KEVLG----- -PDEVLLVLD AMTGQ---EA 189 AGRLQID--- EPLMGELARL KEVLG----- -PDEVLLVLD AMTGQ---EA 384 AGRLQNK--- SHLMEELKKI VRVMKKLDVE APHEVMLTID ASTGQNAVSQ E. coli Ffh KFFH A. ambivalens SRP54 1J8M T. aquaticus Ffh 1JPJ T. aquaticus Ffh 1NG1 E. coli FtsY 1FTS |--------G4--------| |closing 229 ANTAKAFNEA LPLTGVVLTK VDGDARGGAA LSIRHIT-GK PIKFLGVGEK 229 YDLASKFNQA SKIGTIIITK MDGTAKGGGA LSAVAAT-GA TIKFIGTGEK 227 LSVARAFDEK VGVTGLVLTK LDGD-ARGGA ALSARHVTGK PIYFAGVSEK 227 LSVARAFDEK VGVTGLVLTK LDGD-ARGGA ALSARHVTGK PIYFAGVSEK 431 AKLFHE---A VGLTGITLTK LDGTAKGGV- IFSVADQFGI PIRYIGVGER E. coli Ffh KFFH A. ambivalens SRP54 1J8M T. aquaticus Ffh 1JPJ T. aquaticus Ffh 1NG1 E. coli FtsY 1FTS loop| 278 TEALEPFHPD RIASR--ILG MGD 298 278 IDELEVFNPR RFVAR--L-H HHH 297 276 PEGLEPFYPE RLAGR--ILG M-- 294 276 PEGLEPFYPE RLAGRILG-M --- 294 477 IEDLRPFKAD DFIEAL--FA R-- 495 Table 2: Sequence alignment and template x-ray crystal structures used to produce E. coli Ffh homology model. Figure 4: Results of UHBD electrostatics calculations using CHARMm forcefield parameters. The proteins are shown in the same orientation as they were positioned in the complex. Left: E. coli Ffh, Right: E. coli FtsY. Contour levels for both proteins: -0.1 to 0.1. Positively charged regions are shown in blue and negatively charged regions are shown in red. Conclusions & Outlook *We have made a homology2+ model of E. coli Ffh *We have docked GTP-Mg to both Ffh and FtsY *We are evaluating a proposed model of the Ffh-FtsY complex *The electrostatics calculations indicate that the positively charged Ffh and negatively charged FtsY are somewhat complementary in the orientation from the proposed model *SDA (simulated diffusional association) calculationsare currently underway to evaluate other possible association modes for the 2 proteins *The M domain of Ffh and the 4.5S RNA are currently being modelled into the complex J. William Fulbright Foreign Scholarship Board and the German Fulbright Kommission Klaus Tschira Stiftung (KTS)
© Copyright 2026 Paperzz