..\DiffEq Introduction In this document the harmonic oscillator will be used as a test case for the ability to approximate the wave function by a complex form similar to the WKB form. The beginning of this is a visual hand fit of a harmonic oscillator potential to the bottom of the resonance potential. Figure 1 plotv1 is the resonance potential. plotv is a Harmonic oscillator that approximates the resonance potential. X'S FOR E=POT(X) -4.3250000000000002 -0.8496377147287321 0.8496377147287320 Potential.for FUNCTION V(X,dVdx,IPOT) DATA A,W/5D0,3D0/ SELECT CASE(IPOT) … CASE(4) V=(X/(.45d0*W))**2-4.8168436111126578D0 DVDX=2*X/(.45d0*W)**2 … END SELECT RETURN END V x V x0 x x0 V ' x0 1 2 x x0 V ' x0 2 Start at the potential minimum 2 1 2 d V xmin V ( x) V xmin x xmin 2 dx 2 x min Define 2 1 d V xmin 2 2 dx 2 x 2 (1.2) min x exp x 2 d x dx 2 x exp x 2 d 2 x dx 2 (1.3) 2 4 2 x 2 exp x 2 The Schrodinger equation is 2 1 d x V x x EH x 2 dx 2 (1.4) 2 1 d x 2 x 2 x EH x 2 2 dx Or 2 2 x 2 2 2 x 2 EH So that for the ground state EH V xmin (1.6) (1.5) (1.1) AlphaFind.for ALPHA,EH 0.5237828008789240 -4.2930608102337340 EH0=-3.2454952084758855 1ST excited H.O. state. The excited states are defined in ..\Raising.docx d 2 x n 1 x (1.7) dx En EH 0 2n n x d 2 x exp x 2 dx 1 x 2 x 2 x exp x 2 (1.8) 4 x exp x 2 d 2 x 4 x exp x 2 dx 2 x 4 8 2 x 2 8 2 x 2 exp x 2 16 2 x 2 4 exp x 2 (1.9) 4 4 x 2 1 exp x 2 d 2 x x exp x 2 dx 2 x 1 2 x 2 2 x 2 exp x 2 4 x 2 1 exp x 2 8 2 x 2 4 exp x 2 4 2 x 2 1 exp x 2 The file HOTheory.out is found by HOBli.wpj. I used 65 points so that the difference between the differential equation and the simple theory is easy to see. EulerExt.wpj EulerExt.for Case(1) x exp p x p x x x0 2 (1.10) z x 2 x x0 ... CASE(1) ! Normal Harmonic Oscillator Ground State exp(-alpha*x2) … P0=-alpha*x0**2 !V starts at 0 Z0=-2*alpha*x0 … CALL ZFIND(NAZ,IPOT,EH,X0,Z0,XEND) … CALL zToP(NAZ,Nap,p0) … CALL pToPsi(NAp,NAPsi,ISELECT) Figure 2 z(x) as found by EulerExt The function z(x) = -2αx was expected to follow the straight line indefinitely. The eigenvalue with 3000 steps across the region shown is exact to the 9 digits printed out for all values of x. Figure 3dz/dx as a function of x Figure 4 the wave function from z (exp(p(x)) comparedwith the theoretical H.O. ground state Figure 5EulerExt using f t t versus theory for Harmonic oscillator Figure 6 Data from figure above on log scale. Case(2) WKB inspired p x ix 2 EH V x z x p ' x i 2 EH V x i xV ' x 2 EH V x CASE(2) !H.O.WKB starting c p=-isqrt(EH-V(x0))*x WKB c z=dp/dx=-i*sqrt(EH-V(x0))+i*x*dVdx0/sqrt(EH-V(x0)) … V0=V(x0,dVdx0,IPOT) if(EH.GT.V0)then srt=sqrt(2*(EH-V0)) p0=-ci*srt*x0 z0=-ci*(srt-x0*dVdx0/srt) else srt=sqrt(2*(V0-EH)) p0=srt*x0 z0=srt+x0*dVdx0/srt (1.11) endif … CALL ZFIND(NAZ,IPOT,EH,X0,Z0,XEND) … CALL zToP(NAZ,Nap,p0) … CALL pToPsi(NAp,NAPsi,ISELECT) Figure 7 zcase2 real and imaginary and zcase1 for comparison The integral of the imaginary part of z is π/2. The term exp(iπ/2) is a complex way of writing -1. This means that for large values of x, the wave function goes to an incorrect -∞, rather than the incorrect +∞ seen in figure 6. Figure 8 zcase2 1 4 is real(dzdx): zcase2 1 5 is imag(dzdx) The energy is the ground state energy, -4.29306081, for all values of x. Figure 9PsiCase2 1 3 = imag(PsiCase2) Case(3) WKB inspired p x ix 2 EH V x z x p ' x i 2 EH V x i xV ' x 2 EH V x Only the two initial lines are changed from case(2) (1.12) Figure 10 zcase3 real(z); zcase3 1 3 imag(z); zcase1 for comparison. Figure 11 Psicase3 1 3 = imag(Psi) HO 1stexcited state At x=0 p ix x 2 z i 2 x dzdx 2 2ND excited state Ex 2 x, c x 2 cˆ sum x, c (2.1) This state contains the ground state in chat which makes it harder to minimize the variance. – it keeps wanting to go to the ground state. So that in one dimension d Ex 2 x, c d EEx 2 x, c d 2 Ex1 x, c dx d Ex 2 x, c 2 dx 2 d sum dx d sum x, c 2 x sum x, c x 2 cˆ 2 sum x, c 4 x 2 4 x dsum d 2 sum x 2 cˆ x 2 cˆ dx dx 2 dx Ex 2 x, c d 2 sum x cˆ dx 2 2
© Copyright 2026 Paperzz