TAKE-HOME QUIZ # 1

π‘Ίπ’π’π’–π’•π’Šπ’π’π’”
1. Exponential/Logarithmic Equations. Solve for x in the following equations. Write your
answers as decimals numbers rounded to 3 digits after the decimal point.
(a) 𝑒 2π‘₯βˆ’6 = 52
π‘Ίπ’π’π’–π’•π’Šπ’π’
𝑒 2π‘₯βˆ’6 = 52;
π‘‡π‘Žπ‘˜π‘–π‘›π‘” π‘›π‘Žπ‘‘π‘’π‘Ÿπ‘Žπ‘™ π‘™π‘œπ‘”π‘Žπ‘Ÿπ‘–π‘‘β„Žπ‘šπ‘ π‘œπ‘› π‘π‘œπ‘‘β„Ž 𝑠𝑖𝑑𝑒𝑠;
𝑙𝑛𝑒 2π‘₯βˆ’6 = 𝑙𝑛52
(2x βˆ’ 6)𝑙𝑛𝑒 = 𝑙𝑛52
(β†’ π‘™π‘›π‘Žπ‘ = 𝑏𝑙𝑛 π‘Ž)
𝑙𝑛52
(2π‘₯ βˆ’ 6) =
= 3.951243719
𝑙𝑛𝑒
π‘₯=
3.951243719 + 6
= 4.975621859
2
𝒙 = πŸ’. πŸ—πŸ•πŸ”(πŸ‘ 𝒅. 𝒑)
(b) 31π‘₯ = 439
π‘Ίπ’π’π’–π’•π’Šπ’π’
31x = 439
Taking logarithms on both sides;
log(31x ) = log 439
log ab = blog a
xlog 31 = log 439
x=
log439
= 1.771846851
log31
𝐱 = 𝟏. πŸ•πŸ•πŸ (πŸ‘ 𝐝. 𝐩)
1
(c) log 3 (3π‘₯ + 4) βˆ’ log 3 (π‘₯ + 1) = 2
π‘Ίπ’π’π’–π’•π’Šπ’π’
π‘™π‘œπ‘”3 (3π‘₯ + 4) βˆ’ π‘™π‘œπ‘”3 (π‘₯ + 1) = 2
2 = π‘™π‘œπ‘”3 9
log 3 (3π‘₯ + 4) βˆ’ log 3 (π‘₯ + 1)
= π‘™π‘œπ‘”3 9
𝑏
π‘™π‘œπ‘”π‘Ž 𝑏 βˆ’ π‘™π‘œπ‘”π‘Ž 𝑐 = π‘™π‘œπ‘”π‘Ž ( )
𝑐
3π‘₯ + 4
π‘™π‘œπ‘”3 (
) = π‘™π‘œπ‘”3 9
π‘₯+1
3π‘₯ + 4
=9
π‘₯+1
3π‘₯ + 4 = 9(π‘₯ + 1)
3π‘₯ + 4 = 9π‘₯ + 9
5
βˆ’6π‘₯ = 5 π‘₯ = βˆ’
6
π‘₯ = βˆ’0.833 (3 𝑑. 𝑝)
2. Growth and Decay. Imagine that you put $1500 into an account that pays 5.6% per
year, compounded continuously.
(a) What function gives the amount in the account after t years?
π‘­π’–π’π’„π’•π’Šπ’π’;
π’˜π’‰π’†π’“π’† ;
𝒓 𝒕
𝑷 βˆ’ π’Šπ’” 𝒕𝒉𝒆 π’‘π’“π’Šπ’π’„π’Šπ’‘π’π’† π’‚π’Žπ’π’–π’π’•,
𝑨 = 𝑷 (𝟏 +
)
𝒓 βˆ’ 𝒓𝒂𝒕𝒆
𝟏𝟎𝟎
𝒕 βˆ’ 𝒕𝒉𝒆 π’•π’Šπ’Žπ’† π’Šπ’ π’šπ’†π’‚π’“π’”
𝑨 βˆ’ π‘¨π’Žπ’π’–π’π’• 𝒂𝒇𝒕𝒆𝒓 π’•π’Šπ’Žπ’† 𝒕
(b) What is the balance after 5 years?
𝐴 = 𝑃 (1 +
π‘Ÿ 𝑑
)
100
5.6 5
𝐴 = 1500 (1 +
) = 1969.75
100
𝐻𝑒𝑛𝑐𝑒,
π‘π‘Žπ‘™π‘Žπ‘›π‘π‘’ π‘Žπ‘“π‘‘π‘’π‘Ÿ 5 π‘¦π‘’π‘Žπ‘Ÿπ‘  = $1969.75
𝑃 = 1500; π‘Ÿ = 5.6 ; 𝑑 = 5
(c) What is the balance after 10 years?
π‘Ÿ 𝑑
𝐴 = 𝑃 (1 +
)
100
5.6 10
𝐴 = 1500 (1 +
) = 2586.60
100
𝐻𝑒𝑛𝑐𝑒,
π‘π‘Žπ‘™π‘Žπ‘›π‘π‘’ π‘Žπ‘“π‘‘π‘’π‘Ÿ 10 π‘¦π‘’π‘Žπ‘Ÿπ‘  = $2586.60
𝑃 = 1500; π‘Ÿ = 5.6 ; 𝑑 = 10
2
(d) How long does it take for the account to double in value?
π‘Ÿ 𝑑
5.6 𝑑
𝐴 = 𝑃 (1 +
)
3000 = 1500 (1 +
)
100
100
3000
𝑑
(1
+
0.056)
=
=2
𝑃 = 1500; π‘Ÿ = 5.6 ;
1500
π΄π‘šπ‘œπ‘’π‘›π‘‘ = 2π‘₯1500 = 3000
π‘‘π‘Žπ‘˜π‘–π‘›π‘” π‘™π‘œπ‘”π‘Žπ‘Ÿπ‘–π‘‘β„Žπ‘šπ‘ 
π‘™π‘œπ‘”(1.056)𝑑 = log 2
π‘‘π‘™π‘œπ‘”1.056 = log 2
log 2
𝑑=
= 12.72
π‘™π‘œπ‘”1.056
𝐻𝑒𝑛𝑐𝑒,
π‘‘β„Žπ‘’ π‘Žπ‘π‘π‘œπ‘’π‘›π‘‘ 𝑀𝑖𝑙𝑙 π‘‘π‘œπ‘’π‘π‘™π‘’ π‘Žπ‘“π‘‘π‘’π‘Ÿ 12.72 π‘¦π‘Ÿπ‘ 
3. Growth and Decay. A rule of thumb used by car dealers is that the trade-in value of a
car decreases by a fixed percentage each year. A mini-cooper purchased in 2005 cost
$25,400. According to Kelly Blue book, this car could be sold privately $7,200 in 2013.
(a) Let t be the number of years since 2005. What is k, the decay rate, for this car?
π‘˜ 𝑑
𝐴 = 𝑃 (1 βˆ’
)
100
π‘€β„Žπ‘’π‘Ÿπ‘’ ;
𝑃 βˆ’ πΌπ‘›π‘–π‘‘π‘–π‘Žπ‘™ π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ π‘‘β„Žπ‘’ π‘π‘Žπ‘Ÿ
π‘˜ βˆ’ π‘‘π‘’π‘π‘Žπ‘¦ π‘Ÿπ‘Žπ‘‘π‘’
𝑑 βˆ’ π‘‘β„Žπ‘’ π‘‘π‘–π‘šπ‘’ 𝑖𝑛 π‘¦π‘’π‘Žπ‘Ÿπ‘ 
𝐴 βˆ’ π‘‰π‘Žπ‘™π‘’π‘’ π‘Žπ‘“π‘‘π‘’π‘Ÿ π‘‘π‘–π‘šπ‘’ 𝑑
𝐴 = 7200; 𝑃 = 25400;
𝑑 = 8 ( 2005 π‘‘π‘œ 2013)
π‘˜ 8
7200 = 25400 (1 βˆ’
)
100
7200
(1 βˆ’ 0.01π‘˜)8 =
= 0.283464566
25400
π’•π’‚π’Œπ’Šπ’π’ˆ π’π’π’ˆπ’‚π’“π’Šπ’•π’‰π’Žπ’” 𝒐𝒏 𝒃𝒐𝒕𝒉 π’”π’Šπ’…π’†π’”
π‘™π‘œπ‘”(1 βˆ’ 0.01π‘˜)8 = π‘™π‘œπ‘”(0.283464566)
8π‘™π‘œπ‘”(1 βˆ’ 0.01π‘˜) = π‘™π‘œπ‘”(0.283464566)
π‘™π‘œπ‘”(0.283464566)
π‘™π‘œπ‘”(1 βˆ’ 0.01π‘˜) =
8
π‘™π‘œπ‘”(1 βˆ’ 0.01π‘˜) = βˆ’0.068437652
π’•π’‚π’Œπ’Šπ’π’ˆ π’‚π’π’•π’Šπ’π’π’ˆπ’‚π’“π’Šπ’•π’‰π’Žπ’” 𝒐𝒏 𝒃𝒐𝒕𝒉 π’”π’Šπ’…π’†π’”
1 βˆ’ 0.01π‘˜ = 0.8542;
1 βˆ’ 0.8542
π‘˜=
= 14.579
0.01
𝑯𝒆𝒏𝒄𝒆 𝒕𝒉𝒆 π’…π’†π’„π’‚π’š 𝒓𝒂𝒕𝒆 = πŸπŸ’. πŸ“πŸ•πŸ—%
3
(b) What was the value of the car in 2010?
π‘˜ 𝑑
𝐴 = 𝑃 (1 βˆ’
)
100
𝑃 = 25400; π‘Ÿ = 14.579; 𝑑 = 5
14.579 5
𝐴 = 25400 (1 βˆ’
)
100
𝐴 = 25400π‘₯0.854215 =11551.99
𝑯𝒆𝒏𝒄𝒆, 𝒗𝒂𝒍𝒖𝒆 π’Šπ’ 𝟐𝟎𝟏𝟎 π’˜π’‚π’” $πŸπŸπŸ“πŸ“πŸ. πŸ—πŸ—
1
(c) How long does it take for the car to be worth 10 of its original value?
𝐴 = 𝑃 (1 βˆ’
π‘˜ 𝑑
)
100
14.579 𝑑
)
100
2540
(1 βˆ’ 0.14579)𝑑 =
= 0.1
25400
π‘‘π‘Žπ‘˜π‘–π‘›π‘” π‘™π‘œπ‘”π‘Žπ‘Ÿπ‘–π‘‘β„Žπ‘šπ‘ 
2540 = 25400 (1 βˆ’
𝑃 = 25400;
π‘˜ = 14.579
1
𝐴=
π‘₯ 25400 = 2450
10
π‘™π‘œπ‘”(0.85421)𝑑 = log 0.1
π‘‘π‘™π‘œπ‘”(0.85421) = log 0.1
log 0.1
𝑑=
= 14.61
log 0.85421
𝐻𝑒𝑛𝑐𝑒,
𝑖𝑑 𝑀𝑖𝑙𝑙 π‘‘π‘Žπ‘˜π‘’ 14.61π‘¦π‘Ÿπ‘ 
4
9
4. Acute Angles. Given sec 𝛼 = 7 , find each of the following. Note: write your answers
as decimals rounded to 2 digits after the decimal point. Be sure to include units as
degrees or radians where appropriate! No need to simplify values in square root.
π‘Ίπ’π’π’–π’•π’Šπ’π’
sec 𝛼 =
1
9
=
cos π‘Ž
7
7
9
2
√
π‘Ž = 9 βˆ’ 72 = √14
𝑏 = 7; 𝑐 = 9
cos 𝛼 =
7
𝛼 = cos βˆ’1 ( ) = 38.94°
9
a = √14
sin 𝛼 =
7
𝛽 = sinβˆ’1 ( ) = 51.06°
9
𝑏=7
√14
9
= 0.42
1
cot 𝛼 = tan 𝛼 =
7
√14
cos 𝛼 =
𝑐 =9
7
9
= 0.78
1
tan 𝛼 =
9
√14
7
= 0.53
1
= 1.87 sec 𝛼 = π‘π‘œπ‘ π›Ό = 7 = 1.29 csc 𝛼 = sin π‘Ž =
9
√14
= 2.41
5. Right Triangles. In one area, the lowest angle of elevation of the sun in winter is
27.35°. Find the minimum distance x that a plant needing full sun can be placed from a
fence that is 5.7 feet high. Round your answer to the tenths place
π‘Ίπ’π’π’–π’•π’Šπ’π’
π‘œπ‘π‘
;
π‘Žπ‘‘π‘—
βˆ… = 27.35;
π‘œπ‘π‘ = 5.7;
tan βˆ… =
π‘₯ = π‘Žπ‘‘π‘— =
π‘œπ‘π‘
5.7
=
= 11.01994145
tan βˆ… tan 27.35
π‘₯ = 𝟏𝟏. 𝟎 𝒇𝒆𝒆𝒕
5
6. Given cot πœƒ = βˆ’1 and 540° ≀ πœƒ ≀ 720°
(a) What is πœƒ?
π‘†π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘›;
cot πœƒ = βˆ’1 =
1
= βˆ’1; π‘‘π‘Žπ‘›πœƒ = βˆ’1
π‘‘π‘Žπ‘›πœƒ
πœƒ = 315 + 360𝑛
n
0
1
315
675
πœƒ
πœƒ
= βˆ’45 (πœƒ 𝑖𝑠 𝑖𝑛 π‘‘β„Žπ‘’ 2𝑛𝑑 π‘Žπ‘›π‘‘ 4π‘‘β„Ž π‘žπ‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘›π‘‘ )
𝐼𝑛 π‘‘β„Žπ‘’ 4π‘‘β„Ž π‘žπ‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘›π‘‘;
πœƒ = 360 βˆ’ 45 = 315°.
𝐼𝑛 π‘”π‘’π‘›π‘’π‘Ÿπ‘Žπ‘™;
πœƒ = 315 + 360𝑛;
π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑛 = 0,1,2,3 …
(b) Sketch the angle on a coordinate system.
6
πΉπ‘œπ‘Ÿ 540° ≀ πœƒ ≀ 720°
𝜽 = πŸ”πŸ•πŸ“°
2
1035
7. Large Angles. Use the picture below to fill in the values below. Note: write your
answers as decimals rounded to 3 digits after the decimal point.
tan π‘₯ =
3
;
4
π‘₯ = tanβˆ’1(0.75) = 36.870°
πœƒ = π‘₯ + 360 = 396.870
πœƒ = 396.870°
sin πœƒ = βˆ’0.600
cot πœƒ = 1.333
cos πœƒ = βˆ’ 0.800
sec πœƒ = βˆ’1.250
tan πœƒ = 0.750
csc πœƒ = βˆ’1.667
8. Complete the table below.
s
r
𝜽
0.92
2.4
0.38 radians
25.32
48.35
πœ‹
6
0.96
3.1
0.31 radians
7
8