High Gain Compton Free Electron Laser Chuan Yang LOGO c June 24, 2016 Acknowledgment: K. Fang, R. Bosch, J.Y. Liang, M.H. Wang and J. Wu (SLAC) NSRL, USTC Institute of High Energy Physics, CAS June 23-June 25,2016 Chuan Yang Spectrum of electromagnetic radiation https://en.wikipedia.org/wiki/Electromagnetic_spectrum NSRL, USTC LOGO Institute of High Energy Physics, CAS June 23-June 25,2016 Chuan Yang Potential with Coherent Compton sources Porosity estimation X-Ray phase contrast imaging Pump Probe Method In situ study under operating conditions. 25 (28%) of the 2015 ALS BL 6.0.2, 44 LCLS papers used Optical publications (2010-2015) Pump X-Ray probe NSRL, USTC LOGO Institute of High Energy Physics, CAS June 23-June 25,2016 Chuan Yang Compton Scattering πβ² π βπ= π β πππ π½ ππ π Strategy Conclusion https://en.wikipedia.org/wiki/Compton_scattering NSRL, USTC LOGO Institute of High Energy Physics, CAS June 23-June 25,2016 Chuan Yang Compton Scattering Sub Text Compton Experiment at Brookhaven ATF (record number of X-rays with 10 mm laser) Source: Collaboration meeting, Beijing, January 29-February 1, 2006 V. Yakimenko, I. Pogorelsky , BNL NSRL, USTC LOGO Institute of High Energy Physics, CAS June 23-June 25,2016 Chuan Yang Compton X-ray facilities, projects, experiments around the world ISU Lyncean Tech. MXI Daresbury MIT BNL J-Lab NSC KIPT LAL INFN THU KAERI AIST Tokoy Univ. SINAP Waseda Univ. KEK Many facilities exist; more are planned NSRL, USTC LOGO Institute of High Energy Physics, CAS June 23-June 25,2016 Chuan Yang Major Compton Gamma source facilities around the world MAX-Lab ROKK LEGS HIGS GRAAL LADON SLEGS LEPS Source: 48th ICFA future light sources workshop (FLS2010),SLAC. Y.K.Wu, Duke NSRL, USTC LOGO Institute of High Energy Physics, CAS June 23-June 25,2016 Chuan Yang Some Existing or Planned Compton Sources Source: SLAC summer school on electron and photon beams, July 22-26, 2013 NSRL, USTC LOGO Institute of High Energy Physics, CAS June 23-June 25,2016 Chuan Yang Resonance condition in an undulator Source: βSynchrotron Radiation and Free Electron Lasers : Principles of Coherent X-Ray Generationβ Kwang-Je Kim (ANL), Zhirong Huang (SLAC), Ryan Lindberg (ANL) May 15, 2013 NSRL, USTC LOGO Institute of High Energy Physics, CAS June 23-June 25,2016 Chuan Yang Electronβs trajectory in a laser undulator The Lorentz force can be written as π π2π₯ πΎππ 2 = βπ π¬ + π½ × π© = βππ¬π β π π£π₯ ππ‘ π΅π₯ π π£π¦ π΅π¦ π π£π§ π΅π§ Electronβs trajectory in π₯ direction π₯ = π₯0 + π£π₯0 π§ + NSRL, USTC LOGO ππΈπ 1 β π½πππ π ππ π 2 πΎπ½ 2 ππ 2 πππ 2 π Resonance condition πππ ππ π§ Institute of High Energy Physics, CAS June 23-June 25,2016 Chuan Yang Coherent Compton Source (CCS) at SLAC We propose to study the feasibility of a new coherent X-ray source -- a HighGain Compton source that utilizes laser pulse wavefront tilt to extend the electron-laser interaction time, therefore leading to high-gain X-ray production. π³π w NSRL, USTC LOGO Institute of High Energy Physics, CAS June 23-June 25,2016 Chuan Yang Laser beam How can we get the pulse front tilt and pulse flattop we wanted ? 1. GratingβΉ angular dispersion βΉ pulse front tilt Angular dispersion: ππ½ π = ππ π· πππ π½ grating generate angular dispersion Pulse front tilt: ππ½ π = ππππ‘ππ π ππ π0 π0 pulse front tilt caused by angular dispersion NSRL, USTC LOGO Institute of High Energy Physics, CAS June 23-June 25,2016 Chuan Yang Laser beam Pulse front tilt and pulse flattop The following figure shows the dispersive plane (x-z plane) of the optics design which can realize the tilted front and flattop. Dispersive plane (x-z plane) Where G1 means grating, G2 is a DMD which can act as a grating M1: parabolic mirror, M2, M3: cylindrical mirror, S: slit NSRL, USTC LOGO Institute of High Energy Physics, CAS June 23-June 25,2016 Chuan Yang Laser beam The tilt angle caused by G1 and G1 ππΊπ ππ0 ππ0 = ππππ‘ππ + π·2 πππ π½2 π·1 πππ π½2 pulse front tilt caused by grating pair NSRL, USTC LOGO Institute of High Energy Physics, CAS June 23-June 25,2016 Chuan Yang Laser beam Pulse focusing The optics in the vertical plane focus the sheared laser beam onto electron trajectory. --Our optics system is designed for a sheared laser undulator with 1cm width and tens of micron height. NSRL, USTC LOGO Institute of High Energy Physics, CAS June 23-June 25,2016 Chuan Yang Electron Beam NSRL, USTC LOGO Parameters Coherent CS ππ (mm-mrad) 0.131 ππΈ 30keV πΈ 120MeV ππ 25fs π 20pC Institute of High Energy Physics, CAS June 23-June 25,2016 Chuan Yang FEL interaction οΆππ’ = πππ’ππ 1βcos π 1+a2w οΆππ = ππ’ 2 2πΎ π€ οΆπΏπ’ = sin π 2 = οΆππ€ π³π w ππ π2π πΈππ’ππ πππ π 3 ππ€ππ¦ οΆπΏπ’ β π½π Only beam energy πΎ and laser width w are free parameters. NSRL, USTC LOGO Institute of High Energy Physics, CAS June 23-June 25,2016 Chuan Yang FEL optimization β’ β’ β’ β’ β’ β’ E=14J πΈπβ =0.5keV πππ’ππ = 25ππ πππ’ππ = 2600ππ Brightness=1.8 × 1015 Flux=9 × 108 ph/s/0.1%BW 19 Gain Length NSRL, USTC LOGO Institute of High Energy Physics, CAS June 23-June 25,2016 Chuan Yang Comparison with other X-Ray sources Energy Brightness Flux SLAC CCS LMJ X-Ray Tube 0.5keV 9.3keV 3rd Gen SR SR Short Bunch SR Slicing HHG 8keV 8keV 2keV 160eV/300eV 1.8 × 1015 2.6 × 1010 1020 - 107 /1011 - 9 × 108 107 1.6 × 1013 8 × 109 /1.6 × 1011 105 /107 107 /106 /s/1% 0.025 - 54 0.35/0.5 0.1 0.035 1Hz cw 5MHz 5MHz/1.3MHz 1kHz 1kHz (phs/s/0.1%bw) Pulse Duration(ps) repetition Rate LMJ X-Ray Tube: Liquid Metal Jet X-Ray tube. SR Short Bunch: High order cavity and low alpha NSRL, USTC LOGO Institute of High Energy Physics, CAS June 23-June 25,2016 Chuan Yang Future work οΆ Investigate the possible laser cavity schemes. Quantum Beam Design MW storage power MIT NSRL, USTC LOGO Non stacking. Pulses train see the same decaying laser pulse. Institute of High Energy Physics, CAS June 23-June 25,2016 Chuan Yang Thank you! LOGO c NSRL, USTC Institute of High Energy Physics, CAS June 23-June 25,2016 Chuan Yang
© Copyright 2026 Paperzz