(SEM) and energy-dispersive X-ray (EDX) spectra

SUPPORTING INFORMATION
Silica gel mediated oxidative C-O coupling of β-dicarbonyl
compounds with malonyl peroxides in solvent-free condition
Oleg V. Bityukov1,2, Vera A. Vil’1,2,3, Valentina M. Merkulova1, Gennady I. Nikishin1 and
Alexander O. Terent’ev*1,2,3
1
2
N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky
prosp., 119991 Moscow, Russian Federation
All-Russian Research Institute for Phytopathology, 143050 B. Vyazyomy, Moscow Region,
Russian Federation
3
Faculty of Chemical and Pharmaceutical Technology and Biomedical Products, D. I.
Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, Moscow
125047, Russian Federation
S1
Table of contents
Scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) spectra ..................... 3
References ....................................................................................................................................... 6
NMR and HRMS spectra of C-O coupling products ...................................................................... 7
S2
Scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) spectra
Target-oriented approach was utilized for the optimization of the analytic measurements [1]. Before
measurements the samples were mounted on a 25 mm aluminum specimen stub and fixed by conductive
tape. Metal coating with a thin film (7 nm) of gold/palladium alloy (60/40) was performed using
magnetron sputtering method as described earlier [2]. The observations were carried out using Hitachi
SU8000 field-emission scanning electron microscope (FE-SEM). Images were acquired in secondary
electron mode at 2 kV accelerating voltage and at working distance 4-5 mm. Morphology of the samples
was studied taking into account possible influence of metal coating on the surface [2].
The field-emission scanning electron microscopy (FE-SEM) of the samples of silica gel showed that each
type of SiO2 contains small particles of definite size. The silica gel (60-200 µm) is formed by particles
with a size of about 100 µm (Fig.S1), the silica gel (40-60 µm) is composed of particles with a size of
about 50 µm (Fig. S2). The sample of silica gel (5-40 µm) apparently contains small particles with a size
of about 10-50 µm (Fig. S3). The morphology of the surface of silica gel samples is irregular (Fig. S1S3).
Figure S1. SEM images of silica gel 60-200 µm
S3
Figure S2. SEM images of silica gel 40-60 µm
Figure S3. SEM images of silica gel 5-40 µm
S4
The X-ray microanalysis was carried out using energy-dispersive X-ray spectrometer OxfordInstruments
X-max. The background signals of carbon (support, sputtering) and aluminum (support) are observed in
addition to the main signals of Si and O in all spectra. The elemental composition of the sample is
calculated with the use of data shown on the spectrum (the carbon is ignored because of the carbon
deposition is used in accordance with program settings). The X-ray microanalysis showed that the silica
gel samples don’t contain the impurities of heavy elements (Fig. S4-S6).
Figure S4. Energy-dispersive X-ray (EDX) spectra of silica gel 60-200 µm
Figure S5. Energy-dispersive X-ray (EDX) spectra of silica gel 40-60 µm
S5
Figure S6. Energy-dispersive X-ray (EDX) spectra of silica gel 5-40 µm
References
[1] V. V. Kachala, L. L. Khemchyan, A. S. Kashin, N. V. Orlov, A. A. Grachev, S. S. Zalesskiy,
V. P. Ananikov, Russ. Chem. Rev., 82, 648 (2013).
[2] A.S.Kashin, V.P.Ananikov, Russ. Chem. Bull. Int. Ed., 60, 2602 (2011).
S6
1
NMR and HRMS spectra of C-O coupling products
H NMR of 2-((1,1-diacetyl-4-ethoxy-4-oxobutoxy)carbonyl)-2-ethylbutanoic acid, 3aa
S7
13
C NMR of 2-[(1,1-diacetyl-4-ethoxy-4-oxobutoxy)carbonyl]-2-ethylbutanoic acid, 3aa
S8
1
H NMR of 2-((3-benzyl-2,4-dioxopentan-3-yloxy)carbonyl)-2-ethylbutanoic acid, 3ba
S9
13
C NMR of 2-((3-benzyl-2,4-dioxopentan-3-yloxy)carbonyl)-2-ethylbutanoic acid, 3ba
S10
1
H NMR of 2-((1-acetyl-1-(4-chlorobenzyl)-2-oxopropoxy)carbonyl)-2-ethylbutanoic acid, 3сa
S11
С NMR of 2-((1-acetyl-1-(4-chlorobenzyl)-2-oxopropoxy)carbonyl)-2-ethylbutanoic acid, 3сa
13
S12
13
C NMR of 2-((1-acetyl-2-oxocyclopentyloxy)carbonyl)-2-ethylbutanoic acid,3da
S13
13
C NMR of 2-((1-acetyl-2-oxocyclopentyloxy)carbonyl)-2-ethylbutanoic acid,3da
S14
1
H NMR of 2-((1-acetyl-2-oxocyclohexyloxy)carbonyl)-2-ethylbutanoic acid, 3ea
S15
С NMR of 2-((1-acetyl-2-oxocyclohexyloxy)carbonyl)-2-ethylbutanoic acid, 3ea
13
S16
1
H NMR of 2-((3-acetyl-2,6-dioxoheptan-3-yloxy)carbonyl)-2-ethylbutanoic acid, 3fa
S17
С NMR of 2-((3-acetyl-2,6-dioxoheptan-3-yloxy)carbonyl)-2-ethylbutanoic acid, 3fa
13
S18
1
H NMR of 2-((1-(ethoxycarbonyl)-1-methyl-2-oxopropoxy)carbonyl)-2-ethylbutanoic acid, 3ga
S19
СNMR of 2-((1-(ethoxycarbonyl)-1-methyl-2-oxopropoxy)carbonyl)-2-ethylbutanoic acid, 3ga
13
S20
1
H NMR of 2-((3-(ethoxycarbonyl)-2-oxoheptan-3-yloxy)carbonyl)-2-ethylbutanoic acid, 3ha
S21
С NMR of 2-((3-(ethoxycarbonyl)-2-oxoheptan-3-yloxy)carbonyl)-2-ethylbutanoic acid, 3ha
13
S22
1
H NMR of 2-((1-cyano-3-(ethoxycarbonyl)-4-oxopentan-3-yloxy)carbonyl)-2-ethylbutanoic acid, 3ia
S23
С NMR of 2-((1-cyano-3-(ethoxycarbonyl)-4-oxopentan-3-yloxy)carbonyl)-2-ethylbutanoic acid, 3ia
13
S24
1
H NMR of 2-((1-benzyl-1-(ethoxycarbonyl)-2-oxopropoxy)carbonyl)-2-ethylbutanoic acid, 3ja
S25
С NMR of 2-((1-benzyl-1-(ethoxycarbonyl)-2-oxopropoxy)carbonyl)-2-ethylbutanoic acid, 3ja
13
S26
1
H NMR of 1-((1-benzyl-1-(ethoxycarbonyl)-2-oxopropoxy)carbonyl)cyclopropanecarboxylic acid, 3jb
S27
С NMR of 1-((1-benzyl-1-(ethoxycarbonyl)-2-oxopropoxy)carbonyl)cyclopropanecarboxylic acid, 3jb
13
S28
1
H NMR of 1-((1-benzyl-1-(ethoxycarbonyl)-2-oxopropoxy)carbonyl)cyclobutanecarboxylic acid, 3jc
S29
С NMR of 1-((1-benzyl-1-(ethoxycarbonyl)-2-oxopropoxy)carbonyl)cyclobutanecarboxylic acid, 3jc
13
S30
HRMS of 1-((1-benzyl-1-(ethoxycarbonyl)-2-oxopropoxy)carbonyl)cyclobutanecarboxylic acid, 3jc
S31
1
H NMR of 1-((1-benzyl-1-(ethoxycarbonyl)-2-oxopropoxy)carbonyl)cyclopentanecarboxylic acid, 3jd
S32
С NMR of 1-((1-benzyl-1-(ethoxycarbonyl)-2-oxopropoxy)carbonyl)cyclopentanecarboxylic acid, 3jd
13
S33
1
H NMR of 2-(((1-(ethoxycarbonyl)-2-oxocyclopentyl)oxy)carbonyl)-2-ethylbutanoic acid, 3ka
С NMR of 2-(((1-(ethoxycarbonyl)-2-oxocyclopentyl)oxy)carbonyl)-2-ethylbutanoic acid, 3ka
13
S34
S35
1
H NMR of 2-((1-(ethoxycarbonyl)-2-oxocyclohexyloxy)carbonyl)-2-ethylbutanoic acid, 3la
S36
С NMR of 2-((1-(ethoxycarbonyl)-2-oxocyclohexyloxy)carbonyl)-2-ethylbutanoic acid, 3la
13
S37
1
H NMR of 2-((3-acetyl-2-oxotetrahydrofuran-3-yloxy)carbonyl)-2-ethylbutanoic acid, 3ma
S38
СNMR of 2-((3-acetyl-2-oxotetrahydrofuran-3-yloxy)carbonyl)-2-ethylbutanoic acid, 3ma
13
S39
S40