State Space Models
Let { xt:t T} and { yt:t T} denote two vector
valued time series that satisfy the system of
equations:
yt = Atxt + vt (The observation
equation)
xt = Btxt-1 + ut (The state equation)
The time series { yt:t T} is said to have
state-space representation.
Note: { ut:t T} and { vt:t T} denote two
vector valued time series that satisfying:
1.
2.
3.
4.
E(ut) = E(vt) = 0.
E(utusˊ) = E(vtvsˊ) = 0 if t ≠ s.
E(ututˊ) = Su and E(vtvtˊ) = Sv.
E(utvsˊ) = E(vtusˊ) = 0 for all t and s.
Example: One might be tracking an object with
several radar stations. The process {xt:t T}
gives the position of the object at time t. The
process { yt:t T} denotes the observations at
time t made by the several radar stations.
As in the Hidden Markov Model we will be
interested in determining position of the object,
{xt:t T}, from the observations, {yt:t T} ,
made by the several radar stations
Example: Many of the models we have
considered to date can be thought of a StateSpace models
Autoregressive model of order p:
yt 1 yt 1 2 yt 2 p yt p ut
yt p 1
xt
yt 1
yt
Define
Then yt 0 0 1xt
and
xt Bxt 1 ut
0
0
1
1
0
2
Observation equation
State equation
0
0
x t 1 ut
1
0
p
1
Hidden Markov Model: Assume that there are
m states. Also that there the observations Yt are
discreet and take on n possible values.
Suppose that the m states are denoted by the
vectors:
1
0
0
0
1
0
e1 , e 2 , , e m
0
0
1
Suppose that the n possible observations taken
at each state are
1
0
0
0
1
0
f1 , f 2 , , f n
0
0
1
Let
ij PX t e j X t 1 ei , ij
mm
and
ij PYt f j X t ei , Β ij
mn
i1
i2
E X t X t 1 e i
Πe i
im
Note
Let
ut X t EX t X t 1 ei
X t Πei
X t ΠX t 1
So that
X t ΠX t 1 ut
with
The State Equation
Eut X t 1 , X t 2 Eut X t 1 0
Also
X t X t Π X t 1 ut Π X t 1 ut
Π X t 1 Π X t 1 Π X t 1ut ut Π X t 1 ut ut
Hence
ut ut X t X t ΠX t 1 ΠX t 1 ΠX t 1ut ut ΠX t 1
and
Σu Eut ut X t 1 EX t X t X t 1 t ΠX t 1 ΠX t 1
Ediag X t X t 1 Πdiag X t 1 Π
where diag(v) = the diagonal matrix with the
components of the vector v along the diagonal
Since
X t ΠX t 1 ut
then
diag X t diag ΠX t 1 diag ut
and
Ediag X t X t 1 diag ΠX t 1
Thus
Σu diag ΠX t 1 Πdiag X t 1 Π
We have defined
ij PYt f j X t ei , Β ij
mn
Hence
Let
i1
E Yt X t e i i 2 Βe i
in
vt Yt EYt X t
Yt ΒX t
Then
Yt ΒX t v t
with
The Observation
Equation
Evt X t 0
and
Σ v Evt vt X t diag ΒX t Βdiag X t Β
Hence with these definitions the state sequence
of a Hidden Markov Model satisfies:
X t ΠX t 1 ut The State Equation
with Eut X t 0
and Σu Eut ut X t 1 diag ΠX t 1 Πdiag X t 1 Π
The observation sequence satisfies:
Yt ΒX t v t The Observation Equation
with
Evt X t 0
and Σ v Evt vt X t diag ΒX t Βdiag X t Β
Kalman Filtering
We are now interested in determining the state
vector xt in terms of some or all of the
observation vectors y1, y2, y3, … , yT.
We will consider finding the “best” linear
predictor.
We can include a constant term if in addition one
of the observations (y0 say) is the vector of 1’s.
We will consider estimation of xt in terms of
1. y1, y2, y3, … , yt-1 (the prediction problem)
2. y1, y2, y3, … , yt (the filtering problem)
3. y1, y2, y3, … , yT (t < T, the smoothing problem)
For any vector x define:
xˆ s xˆ
1
s
xˆ
2
s
xˆ
p
s
where
xˆ i s
is the best linear predictor of x(i), the ith
component of x, based on y0, y1, y2, … , ys.
The best linear predictor of x(i) is the linear
function that of x, based on y0, y1, y2, … , ys that
minimizes
i
E x xˆ
i
s
2
Remark: The best predictor is the unique
vector of the form:
xˆ s C0 y 0 C1y1 Cs y s
Where C0, C1, C2, … ,Cs, are selected so that:
x xˆ s y i
i 0,1,2,, s
i.e. Ex xˆ s yi 0 i 0,1,2,, s
Remark: If x, y1, y2, … ,ys are normally
distributed then:
xˆ s Ex y1 , y 2 ,, y s
Remark
Let u and v, be two random vectors than
uˆ v Cv
is the optimal linear predictor of u
based on v if
C EuvEvv
1
State Space Models
Let { xt:t T} and { yt:t T} denote two vector
valued time series that satisfy the system of
equations:
yt = Atxt + vt (The observation
equation)
xt = Btxt-1 + ut (The state equation)
The time series { yt:t T} is said to have
state-space representation.
Note: { ut:t T} and { vt:t T} denote two
vector valued time series that satisfying:
1.
2.
3.
4.
E(ut) = E(vt) = 0.
E(utusˊ) = E(vtvsˊ) = 0 if t ≠ s.
E(ututˊ) = Su and E(vtvtˊ) = Sv.
E(utvsˊ) = E(vtusˊ) = 0 for all t and s.
Kalman Filtering:
Let { xt:t T} and { yt:t T} denote two vector
valued time series that satisfy the system of
equations:
yt = Atxt + vt
xt = Bxt-1 + ut
xˆ t s Ext y1 , y 2 ,, y s
Let
and
s
Σtu
E xt xˆ t s xu xˆ u s y1 , y 2 ,, y s
Then
xˆ t t 1 Βxˆ t 1 t 1
xˆ t t xˆ t t 1 K t y t At xˆ t t 1
where
t 1
K t Σ tt
t 1
At A t Σ tt
At Σ v
1
One also assumes that the initial vector x0
has mean m and covariance matrix S an that
xˆ 0 0 μ
The covariance matrices are updated
Σttt 1 B Σtt11,t1 B Σu
Σ ttt Σ ttt 1 K t AΣ ttt 1
with
0
Σ 00 Σ
Summary: The Kalman equations
1.
Σttt 1 B Σtt11,t1 B Σu
t 1
t 1
At A t Σ tt
At Σ v
1
2.
K t Σ tt
3.
Σ ttt Σ ttt 1 K t AΣ ttt 1
4.
xˆ t t 1 Βxˆ t 1 t 1
5.
xˆ t t xˆ t t 1 K t y t At xˆ t t 1
with
xˆ 0 0 μ
and
0
Σ 00 Σ
Proof:
Now
xˆ t s Ext y1 , y 2 ,, y s
hence xˆ t t 1 Ext y1 , y 2 ,, y t 1
EΒxt 1 ut y1 , y 2 ,, y t 1
ΒExt 1 y1 , y 2 ,, y t 1
Βxˆ t 1 t 1
proving (4)
Note yˆ t t 1 Ey t y1 , y 2 ,, y t 1
EAt xt vt y1 , y 2 ,, y t 1
At Ext y1 , y 2 ,, y t 1 At xˆ t t 1
Let
et y t yˆ t t 1
y t At xˆ t t 1
At xt v t At xˆ t t 1
At xt xˆ t t 1 v t
Let
dt xt xˆ t t 1
Given y0, y1, y2, … , yt-1 the best linear
predictor of dt using et is:
1
Edt et Eet et et
Edt y 0 , y1 ,, y t 1 , et
Edt y 0 , y1 ,, y t 1 , y t
xˆ t t xˆ t t 1
Hence
xˆ t t xˆ t t 1 K t et
where
et y t At xˆ t t 1
and
K t Edt et Eet et
(5)
1
Ex xˆ t 1x xˆ t 1 A
Now
Edt et E xt xˆ t t 1At xt xˆ t t 1 vt
t
t 1
Σ tt
t
At
t
t
t
Also
Eet et EAt xt xˆ t t 1 v t
At xt xˆ t t 1 vt
At E xt xˆ t t 1xt xˆ t t 1 At
At Ext xˆ t t 1vt
E vt xt xˆ t t 1 At Evt vt
A t Σ ttt 1 At Σ v
hence
t 1
t 1
K t Σ tu At A t Σ tt
At Σ v
1
(2)
Thus
xˆ t t 1 Βxˆ t 1 t 1
(4)
xˆ t t xˆ t t 1 K t y t At xˆ t t 1
where
t 1
K t Σ tt
t 1
At A t Σ tt
At Σ v
1
(5)
(2)
Also
t 1
ˆ
ˆ
Σtt E xt xt t 1xt xt t 1 y 0 ,, y t 1
EΒxt 1 ut Βxˆ t 1 t 1
Βxt ut Βxˆ t t 1 y 0 ,, y t 1
Hence
Σttt 1 B Σtt11,t1 B Σu
(3)
The proof that
Σ ttt Σ ttt 1 K t AΣ ttt 1
will be left as an exercise.
(1)
Example:
Suppose we have an AR(2) time series
xt 1 xt 1 2 xt 2 ut
What is observe is the time series
yt xt vt
{ut|t T} and {vt|t T} are white noise time
series with standard deviations su and sv.
This model can be expressed as a state-space
model by defining:
xt
1
x t , Β
1
xt 1
then
xt 1
x 1
t 1
2
ut
, ut
0
0
2 xt 1 ut
0 xt 2 0
or xt Βxt 1 ut
The equation:
yt xt vt
can be written
xt
yt 1,0 vt Ax t vt
xt 1
Note:
Σ v s v2
s u2
Σu
0
0
0
The Kalman equations
1.
Σttt 1 B Σtt11,t1 B Σu
t 1
t 1
At A t Σ tt
At Σ v
1
2.
K t Σ tt
3.
Σ ttt Σ ttt 1 K t AΣ ttt 1
4.
xˆ t t 1 Βxˆ t 1 t 1
5.
xˆ t t xˆ t t 1 K t y t At xˆ t t 1
Let
t 1
Σtt
s
s
t
11
t
12
s
s
t
12
t
22
t
t
r
r
t
11
12
Σtt t
t
r12 r22
The Kalman equations
Σttt 1 B Σtt11,t1 B Σu
1.
t
s11
t
s12
s 1
s 1
t
12
t
22
2 r11t 1 r12t 1 1 1 s u2 0
t 1 t 1
0 r12 r22 2 0 0 0
s r 2r 2 r s
t
11
t 1 2
11
1
t 1
12
1
s r r 2
t
12
t 1
11
1
t 1
11
s r
t
22
t 1
12
t 1
22
2
2
2
u
2.
t 1
K t Σ tt
s
Kt
s
t
11
t
12
t 1
At A t Σ tt
s
s 1
1 0
s 0
s
t
12
t
22
t
11
t
12
At Σ v
s 1
s v
s 0
t
12
t
22
t
s11
t
t
s11
t
s
s
1
11
v
t s11 s v
t
s
12
s12
st s
v
11
1
1
t
t 1
Σ tt Σ tt
3.
t
r11t r12t s11
t
t
t
r12 r22 s12
r s
t
11
s
s s
r s
t
22
t
22
2
v
2
s
t
12
s s
t
11
t
t
s
s11 s12
K t 1 0 t
t
s
s12 s22
t
s11
t
t
2
s11
s12
s
t
v t
s11 s12
t
t
s22 s12
st s 2
v
11
t t
s11s12
t
t
r12 s12 t
s11 s v2
t 2
11
t
11
K t AΣ tt
t
12
t
22
s11t
t
s12
t
11
t 1
2
v
4.
xˆ t t 1 Βxˆ t 1 t 1
xˆt t 1 1
xˆ t 1 1
t 1
2 xˆt 1 t 1
ˆ
0 xt 2 t 1
xˆt t 1 1 xˆt 1 t 1 2 xˆt 2 t 1
5.
xˆ t t xˆ t t 1 K t y t At xˆ t t 1
xˆt t xˆt t 1
xˆt t 1
xˆ t xˆ t 1 K t yt 1 0 xˆ t 1
t 1 t 1
t 1
t
s11
t
2
xˆt t xˆt t 1 s11
s
v
yt xˆt t 1
t
xˆ t xˆ t 1
t 1 t 1
s12
st s 2
v
11
t
11
s
yt xˆt t 1
xˆt t xˆt t 1 t
2
s11 s v
t
12
s
yt xˆt t 1
xˆt 1 t xˆt 1 t 1 t
2
s11 s v
Kalman Filtering (smoothing):
Now consider finding
xˆ t T Ext y1 , y 2 ,, yT
These can be found by successive backward
recursions for t = T, T – 1, … , 2, 1
xˆ t 1 T xˆ t 1 t 1 J t 1 xˆ t T xˆ t t 1
where
s
Σtu
t 1
t 1
J t 1 Σt 1,t 1Β Σtt
1
E xt xˆ t s xu xˆ u s y1 , y 2 ,, y s
The covariance matrices satisfy the recursions
T
t 1
T
t 1
Σt 1,t 1 Σt 1,t 1 J t 1 Σtt Σtt
J
t 1
The backward recursions
1.
2.
3.
t 1
t 1
J t 1 Σt 1,t 1Β Σtt
1
xˆ t 1 T xˆ t 1 t 1 J t 1 xˆ t T xˆ t t 1
T
t 1
T
t 1
Σt 1,t 1 Σt 1,t 1 J t 1 Σtt Σtt
J
t 1
In the example:
t
1
t r11t r12t
s12
Β
Σ
1
tt
t
t
t
s22
r12 r22
t 1
t 1
Σ tt , Σ tt , xˆt t 1 and xˆt t
t
s
t 1
11
Σtt t
s12
- calculated in forward recursion
2
0
© Copyright 2026 Paperzz