Université René Descartes – Paris 5 UFR Biomédicale des Saints-Pères Ecole Doctorale du Médicament Strategic investigations for the design of a library of liposidomycins analogs, natural antibiotics dedicated to the MraY translocase Maryon GINISTY Direction : Pr. Yves Le Merrer Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques Direction : Dr. Daniel Mansuy - UMR 8601 – CNRS 45, rue des Saints-Pères - 75270 Paris Cedex 06- France ANTIBACTERIAL RESISTANCE : A MAJOR OBSTACLE FOR ANTIBIOTHERAPY 1940’s : development of penicillin and appearance of the concept of antibiotics « Agents with specific antibacterial action and with toxicity selectively directed against bacteria in low concentrations » ► Bacteriostatic effect (decrease or stop of bacterial growth) ► Bactericid effect (destruction of bacteria) ● Complexity and adaptability of bacterial world ► Therapeutic failure ► Development of a large number of antibiotics classified according to various criteria : site of action, origin, administation route, structure ⇒ Eight major families : b-lactams, aminosides, macrolides, sulfamides, poly- et glyco-peptides, cyclins, (fluoro)quinolons… 2 RESISTANT STRAINS AND MECHANISMS ⇒ Resistant strain : strain able to develop in the presence of an antibiotic concentration antibiotic antibiotic antibiotic « modifying » notably higher than that which inhibits development of other strains of same species enzyme pump ● Two types of resistance : ► Natural resistance (intrinsic property related to the bacterial genetic program) ► Acquired resistance (property resulting from genetic modifications of the resistance receptor modified modified bacterial cells) antibiotic receptor gene ● Five major mechanisms of resistance : - Overproduction of antibiotic target - Metabolic bypass of inhibited reaction - Inactivation of antibiotic by enzymatic modification - Modification of target eliminating or reducing antibiotic binding to target - Decrease of cellular permeability to antibiotic 3 SITES OF ACTION OF ANTIBIOTICS AND POTENTIAL TARGETS ⇒ Four sites of action specific to procaryote bacterial cells - ribosomes responsible for protein synthesis - metabolism of nucleic acids ⇒ inhibition of DNA synthesis ⇒ inhibition of DNA transcription into messenger RNA - oxydoreduction (5-nitro-imidazoles) via formation of superoxides and nitro radicals responsible of irreversible damage on bacterial DNA O2N - cell wall biosynthesis BACTERIA Bacterial wall Gram (+) cell N CH3 N R mRNA RNA-polymerase mRNA DNA external membrane ribosome 5-nitro-imidazoles lipopolysaccharide periplasm cytoplasmic membrane cytoplasm DNA-gyrase aminoacid peptidoglycan Gram (-) cell cytoplasmic membrane cytoplasm 4 fosfomycin ANTIBIOTICS AND BACTERIAL PEPTIDOGLYCAN BIOSYNTHESIS UDP-GlcNAc MurA O tunicamycin muraymycin PO32mureidomycin Fosfomycin liposidomycin PEP UDP-GlcNAc-enolpyruvate UMP MurB MraY NADPH UDP-MurNAc Undecaprenyl-P MurC L-Ala Pi BacA D-cycloserin Lipid Alr I D-AlaUDP-GlcNAc MurG CYTOPLASM MEMBRANE UDP-MurNAc-L-Ala - OPO32-bacitracin O2 C UDP MurI MurD D-Glu L-Glu Undecaprenyl-PP Lipid II HN O UDP-MurNAc-dipeptide PEP MurE Polymer PBPs meso-A2pm Acceptor D-cycloserin NH2 PERIPLASM UDP-MurNAc-tripeptide penicillin cephalosporin pentapeptide PBPs MurF Ddl moenomycin D-Ala vancomycin D-Ala-D-Ala Peptidoglycan UDP-MurNAc-pentapeptide N-acetylmuramic acid D-Cycloserin O- N-acetylglucosamine O H3C O CH tétrapeptide O tetrapeptide C O O NHCOCH3 O NH3+ O O D-Alanine NHCOCH3 NH N-acetylmuramic acid N-acetylglucosamine 5 INHIBITORS AND NATURAL SUBSTRATE OF MraY TRANSLOCASE Tunicamycins A : n=9 B : n=10 C : n=8 D : n=11 HO2C O CH2 n HO HO HO O OH OH HO O N O N O H AcHN H N N H O HN HO OH Me R1 NH HO O O N O AcHN O pentapeptide-HN HO O O P O P O A1: R=COC11H22N(OH)C(NH2)=NH A3: R=COC11H22NHC(NH2)=NH C1: R=H NH O- OO N O O O HO3SO OH O OH HO OH NH2 R CH3 HN O O O HN O Muraymycins - NH N HO OCH3 UDP-Mur-NAc-pentapeptide O NH CO2H HO OH O R2 H2N N H HN O H3C H N O O NH O O OR H N O O HO2C O O N HN NH O CH3O N O HO2C N CH3 O O O O N O OH OH O R3 O A: R= OH OH Mureidomycins R1=H, glycinyl R2= CH3S(CH2)2R3= m-hydroxyphenyl Liposidomycins B: R= C: R= NH 6 STRUCTURE OF LIPOSIDOMYCINS A: R= B: R= C: R= H O 3S O OH NH2 R O O O HO2C O CH3 O 6 S 5 HO2C S 5' S 7 1N S 2 4 3 N H O HO O O O N 4' 1' 3' 2' NH O OH CH3 7 SYNTHETIC APPROACHES DESCRIBED IN LITTERATURE 1,4-diazepan-2-one moiety OHC acrolein CH3 ⇖ Z N O 3 Z CHCH 3 4N N PhCOO EtO EtO2C 5 6 3 7 1 2 Boc N H O O H3CCH3 O N HO O N-Z-sarcosine Boc CH3 Knapp et coll. Tetrahedron Lett. 1992, 33, 5485. Knapp et coll. J. Org. Chem. 2001, 66, 5822. N-Boc-sarcosine ethyl ester 8 SYNTHETIC APPROACHES DESCRIBED IN LITTERATURE Ribosyl-diazepanone tBuOOH, Ti(OiPr)4 OMPM OH OMPM OH BnO 88% N BnO TBDMSO O N H N OCH3 O O N H Pd/C, H2 O BnO OCH 3 O 36% O O HO OMPM N3 OH OTBDMSO O OH OMPM N3 N H N3 OHC O tBuOOH, Ti(OiPr)4 OCH3 HO O R L-DET OBn DCC / HOBt R O O N3 NaN3 HO R OTBDMS (S1) N3 O OMPM BnO 50% OBn OBn TBDMSO NaN3 O D-DET OH OH Isono et coll. Heterocycles 1992, 34, 1147. HO OBn OH O HO2C R O O 78% (S2) O R: O OCH3 OCH3 O 9 SYNTHETIC APPROACHES DESCRIBED IN LITTERATURE Nucleosidyl-diazepanone O H Knapp et coll. Org. Lett. 2002, 4, 603. O O O OH HO2C 1/ Oxidation O O N3 TBDMSO 2/ NaN3 O TBDMSO O HO O HO OH H O O 1/ Ozonolysis O H3C N EtO2C OH H N CH 3 TBDMSO 2/ Azide reduction O CO2Et O O O O 3/ Reductive amination PhCOO OH H O O N CH3 NH N3 2 TBDMSO EEDQ CO2Et O NHCH3 PhCOO O NH deprotection, acylation then glycosylation O H 3C OH O N EtO2C N CH 3 HO N OH O 10 SYNTHETIC APPROACHES DESCRIBED IN LITTERATURE Nucleosidyl-ribosyl-diazepanone Angew. Chem. Int. Ed. 2005, 44, 1854. BocHN reductive amination H22N N H HO HO 2 glycosylation 4 HO HO O O HO HO NH NH O O HO C HO22C N N Me Me 3 NH H2O C O O N N N N HO HO O O TBSO O CbzHN OH OH TBDPSO 1 Wittig H2C peptide coupling TBSO N O H N HO2C O O H O O H O O H F O O OO O O O Me Me O O N3 MeO CbzHN 2C NHMe MeO2C OTBDPS OH O O NH O N H O O 11 O STRUCTURE-ACTIVITY RELATIONSHIP : DEVELOPMENT OF A NEW PHARMACOPHORE O pentapeptide-HN O O- O OO P P O O O AcHN HO O O OH NH O HO N O 8 P OO O O OH Undecaprenylphosphate UDP-N-acetyl-muramoylpentapeptide OH O O R HO HO OH HO HN AcHN O OH O OH O O HO NH N O MraY R OH O pentapeptide-HN O O- O OO P P O O O AcHN HO O O OH Lipid I O O O HO2C HO2C Tunicamycins O(SO3)H H 2N Liposidomycins O O N NH O N N O HO OH 8 12 O STRUCTURE-ACTIVITY RELATIONSHIP: DEVELOPMENT OF A NEW PHARMACOPHORE OH HO HO NH2 HO CH3 O N O O O O O O N O HO2C NH O NH N O O OH HO Structure of natural molecules OH Pharmacophore structure OH HO R2 R3O R4 O RO * * N H Target scaffold O N H3C HO NH2 N O * R1 NH22 O O O R2= N NH O 13 SCAFFOLD RETROSYNTHESIS HO Y O PO O HO H 2N 7 PO PO PEPTIDE COUPLING 1 6 NH 2 5 OH amino-dihydroxybutane OH HO L-ascorbic acid N-ALKYLATION 4 HN 1'' 3 O O 4' H2N 5' O ⇒ HO2C NH2 OH 1' L-Serine 3' 2' PO OP O-GLYCOSYLATION 4 P: protecting groups X: halogen H2N O 1 5 X HO 5 3 2 PO 4 OP 5-amino-ribose O 1 OH 3 2 HO OH D-ribose 14 STRATEGIES TOWARDS SCAFFOLD SYNTHESIS amino-dihydroxy- PO butane H2N OH O H2N 1 5 3 PO N-ALKYLATION X 2 H 2N PEPTIDE COUPLING L-serine O Y NH2 HO 4 HO B HO H2N O O O 4' A 5' 2' 3' GLYCOSYLATION PO OP PO 1' PO 5 7 11 6 NH B 22 C 4 OP HN 5-amino-ribose H2N PO aminodihydroxybutane HO Y N-ALKYLATION PO PO 7 1 6 4 NH2 HN H2N 3 4 O PEPTIDE COUPLING OH L-serine H2N 5-amino-ribose 5 3 PO 3' 3' O A 1 X GLYCOSYLATION 2 OP O O 1' 1' 2' 2' OP OP OH O HO 4' 4' O O A PO NH B 2 C 5 5' 1'' 1'' 33 15 ACCESS TO THE SCAFFOLD BY « CHAIN EXTENSION » NHR3 R2O2C glycosylation STEPS AND PRECURSORS amine amine deprotection deprotection NH2 PO O22C R R22O O 2 OP OP22 OP 2 O PP2O O R1HN X P1O OP1 functionalization P1O moiety OP1 of ribosyl O O HN RR11HN HN R2O2C N-alkylation PO O 1 O O 1 NHR33 PO N3 R2O2C OHO O azido-epoxide NHR3 Functionalized NHR L-serinyl-O-ribofuranoside Functionalized L-serinyl-O-ribofuranoside STRATEGY 1 3 OP2 HO glycosylation P2O 1 RO NR2 HO ⇗ OH HN O STRATEGY 2NH X R1HN O O O OH HO O P2O OP2 O P2O OP2 PO PO glycosylation functionalization of ribosyl moiety N3 R2O2C O NH N-alkylation O P1 O 1 PO O R1HN ⇘ scaffold N3 HO2C prefunctionalized ribofuranose R1HN H2 N HO TBDPSO NH TBDPSO HN O O R2O2C OP 1 PO R2O2C P1O NHR3 O azido-époxyde OH NH2 N3 O X R2O2C 1 PO O O 1 11O P OP PO 1 PO OP1 1 OP amine deprotection NHR33 NHR STRATEGY 1 P11O R22O2C R O2C O O O O PO P11O 16 OP11 PO OP ACCESS TO THE SCAFFOLD BY « CHAIN EXTENSION » GLYCOSYLATION STEP X= Br, X= Br,Cl, Cl,F,F SR = OCOR, O3SR, OP(OR)2, OPO2-OR'. Substitution via activation of anomeric position O X O OH "donor" sugar R-OH (acceptor) H+ O R-OH OR acceptor Direct acid-catalyzed substitution 17 ELABORATION OF O-GLYCOSYLATION STEP (1) R R O O X Y Y + PP11O O HO OP OP11 OR O O CO2P2 R-OH NHP3 CO2P2 NHP3 Y P1O R = H : L-serine R = CH3 : L-threonine OP1 NHR2 ⇒ Tricky step : NHR2 O OR1 OR1 O - for the formation of O-glycosidic derivatives, less known than that O Y Basic lability of N-glycosidic analogs PO O O OP O Y - in the particular case of threonyl and serinyl acceptors R2HN H O 1 O OR PO B OP Y H 2O O PO OP O Y "H" O PO OP Y H O Acid lability OH NHR 2 PO OR1 O OP Y O PO NHR2 OP OR1 HO O 18 ELABORATION OF O-GLYCOSYLATION STEP (2) O X Y + 1 1 PO CO2tBu HO activator O O NHP3 Y NHP3 P1O OP CO2tBu b a P3 = Boc, Cbz, Fmoc OP1 ⇒ Success of the reaction and control of stereochemistry depending on three principal factors : - nature of glycosylation activator - nature of activation in anomeric position -nature of the C-2 substituent of the ribose controling a- or b-selective introduction of serine (anchimeric assistance) PO PO PO PO R'-OH O O O O OR' H X PO O O R H PO O PO O O R O PO ROCO H banomer X R 19 ACTIVATION IN ANOMERIC POSITION STRATEGY 1 O O OP1 glycosylation reagent X Y Y P2O OP2 O BnO Y P2O OP2 P2O NHP3 BnO DAST, THF, -30°C to RT, 1h. 95% (b/a= 99/1) SOCl2, DCM, 0°C to RT O RO OR R = Ac X = Br, Cl R = Bz X = Br R = Bn X = Br X = Br TMS-Br, DCM, -40°C to RT. Koenigs-Knorr method R2O O OR1 R2O RO OBn OP2 X = Cl X NHP3 CO2tBu HO O OCO2tBu F O R Y O OR2 1,1= R1=RR Ac R2H= H 2 = Bz, R2 =RAc, Bn Bn O R = OH, F Y = N3, PhtN, NHZ O OAc N3 AcO OAc STRATEGY 2 20 FORMATION OF PREFUNCTIONALIZED RIBOFURANOSIDES O OH HO D-Ribose HO OH a : 1/ H2SO4 (0,1N), 65°C, 4h; 2/ Me2C(OMe)2, CSA, Me2CO, 50°C, 30 min. Me2CO, MeOH, HCl(g), RT. 75% * 2 NaN3 + H2SO4 H2O O 2 HN3 + Na2SO4 0°C O O HN3* (2,8M), PPh3, DIAD, THF, 0°C. 1/ DOWEX 50W-H+, MeOH, 65°C, 17h. 2/ Ac 98% 2O, pyridine, RT, 2h. Pd/C, Pd/C, H2, EtOH, H2, EtOH, CHCl3, CHCl RT, , TA, 1h30. 1h30. 3 98% O O OO OH OMe N3 N 3 OO OMe O OO O O AcOH, Ac2O, H2SO4, RT, 2h. 35% OAc N3 a 25% PhtNK, HMPT, 120°C, 24h. PhtN PhtN OO OMe OAc AcO OO O OMe OH 84% TsO O O ZCl, DIEA, CH2Cl2, RT, 100 % 2h. a 10% TsCl, Et3N, DMAP, CH2Cl2, 0°C to RT. N3 O O ZHN ZHN 50% (b/a= 3,4) a 40% OMe ClH3N OMe HO HO AcO 74% O OH O OMe O O O O 21 OAc SYNTHESIS OF L-SERINYL ACCEPTORS CO2H HO HO CO2tBu NHR NH2 R= Fmoc, Cbz Boc, Boc Cbz, CbzFmoc N-carbamoyl-L-serine tert-butyl ester L-serine NH Cl3C CO2H BnO OtBu CO2tBu BnO BF3.OEt2, cyclohexane, CH2Cl2, TA, 17 h. NHBoc NHBoc H2, Pd(OH)2/ C, EtOH abs., AcOH, TA, 72 h. 96% HO CO2tBu NHBoc 99% tBu-Br, BnEt3NCl, K2CO3, CH3CN, R= Cbz HO HO 50°C, 24h. NHZ 88% CO2H CO2tBu NH NHR R= Fmoc Cl3C OtBu HO AcOEt,cyclohexane, 20°C, 24h. 84% CO2tBu NHFmoc 22 SELECTION OF ACTIVATORS AND OPTIMIZATION OF GLYCOSYLATION CONDITIONS STRATEGY 1 (riboses not functionalized ) OP2 X O O glycosylation activation Y Y OP1 O OAc P1O OP1 P1O O X RO RO RO RO OR P1 P2 Y Ac Ac OAc CO2tBu HO activator NHP3 OR HO Activation X = Br, Cl, X F P3 Br Z TMSBr, DCM, -40°C à TA Ac OBz Brriboses Z ) STRATEGIE 2 (prefunctionalized Bz Bn Ac CMe2 Y CMe2 Bn Y OBn H O N3OH H O H N3 O OBn Br DAST, THF, -30°C à TA, 1h. NHP P1O O F O F OP1 O O RO OR Glycosylation SnCl2/ AgClO4 AgOTf, DCM, -15°C, 15 h. Boc Fmoc HO Boc CO2tBu NHP RO O F F Boc activateur DAST, THF, -30°CYà TA, 2h. CO2tBu Hg(CN)2 AgClO4 TMS-OTf CO2tBu O BFO3.OEt2 NHP3 AgOTf SnCl2/ AgClO4 O O SnCl2, AgClO4, Y -15°C à TA, 48 à 72 h. O CO2tBu O Ratio (b/a) Yield (%) b: 100% 32 b: 100% 92 0,3 69 CO2tBu 2,15 NHP 1,7 100 1,2 44 NHP Ginisty M., Gravier-Pelletier C., Le Merrer Y., Tetrahedron: Asymmetry 2004, 15, 189-193. Ginisty M., Gravier-Pelletier C., Le Merrer Y., Tetrahedron: Asymmetry 2006, 17, 142-150 . 64 23 ACCESS TO THE SCAFFOLD BY « CHAIN EXTENSION » NHR O O PO glycosylation R2O2C azido-epoxide NHR3 3 O O PO amine deprotection NH2 N3 R 2O 2 C O PO 1 R HN P 2O OP2 OP1 P1 O functionalization of ribosyl moiety O R1HN O P2 O P1O R2O2C O X 1 NHR OP1 STRATEGY 1 OP2 functionalized L-serinyl-O-ribofuranoside NHR3 R2O2C HO OH glycosylation TBDPSO NH O N3 HO2C O X STRATEGY 2 1 R HN P2O OP2 O prefunctionalized ribofuranose R1HN P1O OH 1 3 ⇗ R2O2C OP1 O PO STRATEGY 1 azido-epoxide ⇘ NH2 N3 NHR3 amine deprotection R2O2C 2 R O 2C O O P1O O PO OP 1 R2O2C OH glycosylation O 1 PO O X 1 PO 1 1 NHR3 PO 1 OP P1O 24 OP1 FUNCTIONALIZATION OF RIBOSYL MOIETY NHR3 1 R2O2C 4' 1 PO O 3 2 1' O functionalization 3 NHR3 at C-2’ and C-3’ NHR 1C-3’ positionsR2O2C1 2 3 C-2’R2and O2C 2 3 protection deprotection 4' 5' 3' P1O HO 2' 3' OP1 O 1' O 5' HO 2' 4' HO 1' NHR3 1 R2O2C O 4' 1 5' 3' P 2O OH O substitution substitution of the of the 5’-OH 5’-OH function function R HN 2' O O O OP2 OH BzO BzO NHZ NHR NHZ BocHN NHZ K22CO33, 1 Pd(OH) 1 2 MeOH/ H O,H2,Et3N, CH2BzO 1 11 TsCl, DMAP, Cl2, 1 2/C, 2 3 2 1 22 BzO OBz tBuO C1 2 3 22 R = Z 82% 33 3OBz 2C tBuO C tBuO C tBuO C tBuO C 2 ZHN tBuO 3 CH C(OMe) , MeOH, APTS, 2 2 23 3 tBuO222C 3HTA, 2 3CO EtOH abs.,1h. CH H, 6h.tBuO2C 2 2OMe 0°C to TA, PhtNK, DMF, + O O O Boc O O O +1'O (CH O O O O 3)2CO. TA, 24h. OtBu 4' 5' O 5' O 4' 5' O 4'1' 4' 5'5' 160°C, 12h. 4' 5' 5' 4' 1' 5' 1' 4' 1' 5' 1' 1'1' 4' 1' TsO MeOH PhtN HO HO HO AcO HO BnO BzO 3' 2' 3' 2' 3' 2' 3' 2' 3' CO2tBu 3' 2' 3' 2' 81% HO 3' NHZ 2' 2' 3' MeO O70% 100% O O O OH HO AcO OAc HO HO OHOOtBu BzO OBz O O OBn OH O O BnO NHZ NHR NHBoc NHZ NHZ X O MeO O 2' 3' P1 = Ac, Bz, Bn P2 = C(CH3)2 O 1' 3 5' P 2O OP2 2 major product 25 ACCESS TO THE SCAFFOLD BY « CHAIN EXTENSION » NHR3 NHR3 R2O2C azido-epoxide O PO glycosylation O R2O2C OH O P1O N3 NH2 R 2O 2 C O NHR amine deprotection P1O R2O2C O PO OP1 P1 O ⇗ P2O P2 O OP2 OP2 NHR3 functionalized L-serinyl-O-ribofuranoside R2O2C HO OH glycosylation TBDPSO O STRATEGY 2 NH X 1 R HN N3 HO2C O OP1 STRATEGY 1 1 R HN X 1 functionalization of the ribosyl moiety O R1HN O O 3 P2O OP2 prefunctionalized ribofuranose O R1HN P1O O PO OP1 ⇘ STRATEGY 1 azido-epoxide N3 NH2 NHR3 amine deprotection R2O2C 2 R O 2C O O P1O O PO OP 1 R2O2C OH glycosylation O 1 PO O X 1 PO 1 1 NHR3 PO 1 OP P1O 26 OP1 N3 AMINE DEPROTECTION STRATEGY 1 NHZ 1 tBuO2C 2 3 5' RO 4' 1' RO O 3 2 O O 5' 1' 4' O 1 O tBuO2C azido HCO 2NH4 reduction Pd/C 10% MeOH, TA. 3' 2' O 4' 1' 3' 2' OR HO N3NH NHFmoc 2 X 3 PO NHFmoc tBuO2C 5' RO OR R = Ac, Bz STRATEGY 2 2 O 3' 2' RO 1 1 tBuO2C X O O NH2 H2, Pd(OH)2/ C, CH3CO2H, EtOH abs., RT, 24h. H2, Pd(OH)2/ C, CH3CO2H, EtOH abs., RT, 48h. H2, Pd black, CH3CO2H, RT, 48h. 22 O H222N N H 5' 4' 5' 5' 4' 4' O O 3' 2' 3' N 2'3 2' 3' PONHFmoc NH2 protection tBuO2C of C5'-amino group 33 O O O tBuO2C Y O Y= PhtN-, ZHN- 3 2 5' 4' O N3 deprotection of C2-amino group tBuO 2C O O O 1' 1' 1' O O O 1 1' 3' 2' O H2N NH O 1 tBuO2C O O Y N3 O O 2 5' 4' O 27 1' 3' 2' O ACCES TO THE SCAFFOLD BY « CHAIN EXTENSION » : CONCLUSION AND PERSPECTIVES Powerful glycosylation conditions for the diastereoselective formation of serinyl-5’-amino-b-Dribofuranoside derivatives ⇒ unfinished strategy because of difficult functionalization of the ribosyl moiety and amine deprotection. Perspective : ⇒ strategy 2 : glycosylation of 2,3-O-isopropyliden-D-ribofuranoside derivatives differently N-protected, whose synthesis was already carried out. . HO 1) glycosylation functionalization of the OH ribosyl moiety O 5 4 HO 3 2 1 OH O N3 5 4 O 3 2 O OMe 1 Y O 5 4 3 2 O 2) amine deprotection X 1 tBuO2C O Y O 5' 4' 3' A HO 3 2 NH2 1 2 CO2tBu NHFmoc 28 3 O 1' 2' O O 1 Y = PhtN-, ZHNX = activated group B ACCESS TO THE SCAFFOLD BY DIRECT COUPLING amino-dihydroxy- PO butane NH2 H2N PO H2 N HO OH O 1' 5' 3' N-ALKYLATION PEPTIDE COUPLING L-serine 4' Y NH2 HO O HO X H 2N GLYCOSYLATION OP O O O 4' A 5' 1' PO 2' 3' 2' PO PO 7 1 6 5 NH B 2 C 4 OP HN 5'-amino-ribose 4' H2N PO aminodihydroxybutane PO HO Y PO 7 1 6 4 HN NH2 HO 4' OH L-sérine H 2N 5'-amino-ribose O 1' 5' 3' PO X GLYCOSYLATION 2' OP 1' OP OH O O 2' 3' PO 3 H2N O 5' O O A NH B 2 C 5 1'' 3 29 ACCESS TO THE SCAFFOLD BY DIRECT COUPLING CAG STRATEGY Y 1 PO N-alkylation 2 peptide coupling H 2N 6 PO HO 7 3 5 O O HO 4 N H O OH OH HO L-ascorbic acid Y 44 PO PO NH C B 3 55 6 7 11 N 2 H PO H2N PO O OH OH NH2 amino-butanol 1,4-diazépan-2-one 1,4-diazepan-2-one HO O L-serine peptide coupling PO NH 3 6 1 2 PO 7 ACG STRATEGY 4 5 NH2CO2H OH N-alkylation 30 FORMATION OF N1-C2 LINKAGE BY PEPTIDE COUPLING - FIRST STEP OF THE CAG STRATEGY SYNTHESIS OF AMINO-BUTANOL PRECURSORS OTBDPS O OTBDPS O NH2 amino-epoxide N3 azido-epoxide HO OTBDPS O O NH2 amino-acetonide EtO2C TBDPSO O O OTBDPS NH2 amino-ester O CO2OTBDPS Et O N OH 3 HO azido-acetonide 3,4-O-methylethylidenL-threonine ethyl ester TBDPSO CO2Et N3 OTBDPS azido-ester O HO OH L-ascorbic acid CO2Et O O OTBDPS 31 FORMATION OF N1-C2 LINKAGE BY PEPTIDE COUPLING - FIRST STEP OF THE CAG STRATEGY SYNTHESIS OF AMINO-BUTANOL PRECURSORS TBDPSO Introduction of an electrophilic group in C1 position CO2Et R PO 4 O 1 3 2 N3 introduction in C3 position of the azido group N3 OTBDPS PO 4 HO O HO HO OH Me2C(OMe)2, Me2CO, PO HCl(g), RT, 12h. O O3 PO 94% L-ascorbic acid introduction of the azido group in C2 position OOP O 180° 1 rotation 4 2 HO OP OTBDPS O O 1) H2O2, H2O, K2CO3, 0°C, 2h. 2) EtI, CH3CN, 85°C, 12h. PO O PO N3 OP 1 - Y N3 2 OP OH OH OP 4 3 2 O introduction of an electrophilic group in C4 position + 4 3 2 1 CO 180° Et CO22rotation Et O 4 3 2 1 X 4 3 78% OH SN en C3 X O 1 OP 3 2 PO SN en C2 OP 1 OP N3 P : protecting group R = OEt, H 32 FORMATION OF N1-C2 LINKAGE BY PEPTIDE COUPLING - FIRST STEP OF THE CAG STRATEGY SYNTHESIS O CO2Et O OF AMINO-BUTANOL PRECURSORS TBDPSCl, ImH, DMF, 0°C to RT, 12h. O CO2Et TBDPSO 4 3 OTBDPS N3 O OH TFA, H2O, 1) MeC(OMe) , PPTS, CH2ClCO TBDPSCl, ImH, TBDPSO 3HO 2 Et 2 CO0°C, EtAcBr, 4 22) Et THF, 3h. DMF, 0°C to RT. 3N, CH2Cl2 1 3) K2CO3, MeOH. 2 Sharpless epoxidation HO OTBDPS HO OTBDPS 100 % 74% PPh3, H2O, THF, RT, 72h. TBDPSO 87% 3 2 H2N O CO2Et CO2Et O LiAlH4, THF, 0°C OH 98% O O O N3 OTBDPS 3 OTBDPS 1 CO2Et 4 TFA, 1)Tf THF,2O, H22,6-lutidine, O, CH 0°C, 2h2. Cl2, -78°C. NH2 HO O 98% N3 N3 OTBDPS 2) NaN3, DMF, 55% 0°C to RT, 12h. PPh3, DIAD, 130°C, 0,1 mmHg 1 ImH, 4 TBDPSCl, OTBDPS OH DMF, 2 0°C to RT. OHO OTBDPS 3 2 Mitsunobu reaction O 2Et 74% HCO2NH4, Pd/ C 10%, HOOTBDPS OTBDPS MeOH, RT, 2h. TBDPSO 1 4 87% 1CO 3 2 N3 88% 1)Tf2O, 2,6-lutidine, OTBDPS CH2Cl2, -78°C. 78% O O O 2) NaN3, DMF, 0°C to RT, 12h. OH 80% OTBDPS O N3 90% O OTBDPS O NH2 PPh3, H2O, THF, RT, 72h. 78% 33 PEPTIDE COUPLING : SUBSTRATES AND PRODUCTS "AMINO" PRECURSORS PEPTIDE COUPLING COUPLING PRODUCTS CO2Et TBDPSO YIELD CO2Et NHFmoc TBDPSO 100 % a NH2 N H TBDPSO TBDPSO amino-ester OBn O O O P1HN HO2C NH2 O a O NHFmoc OP TBDPSO N H L-SERINE amino-acetonide TBDPSO O O 4' a or b 1' TBDPSO O P2 2 2' NH2 OBn P1 NHP1 3' TBDPSO 100 % 2 3 1 N H OP2 Fmoc Coupling reagent PyBOP 78 % HBTU * 49 % 80 % Bn O amino-epoxide a : PyBOP, DIEA, CH2Cl2 b : HBTU, DIEA, DMF Z tBu PyBOP Boc Bn PyBOP * 25 % of epimerization in C2 position 99 % 34 ACCESS TO THE SCAFFOLD BY DIRECT COUPLING CAG STRATEGY Y 1 PO 2 N-alkylation peptide coupling H 2N 6 PO 7 3 4 N H 5 O OH Y 4 PO PO NH C B 3 5 6 7 1N 2 H PO H2N PO O OH OH NH2 amino-butanol 1,4-diazepan-2-one HO O L-serine peptide coupling PO 4 NH 5 3 6 1 2 PO 7 NH2CO2H OH N-alkylation ACG STRATEGY 35 ACCESS TO THE SCAFFOLD BY DIRECT COUPLING CAG STRATEGY INTRAMOLECULAR PATHWAY Y 1 PO 2 N-alkylation peptide coupling H 2N 6 PO 7 3 4 N H 5 O OH Y PO PO NH C B 3 5 6 7 4 1N H 2 O PO H2N PO OH OH NH2 amino-butanol 1,4-diazepan-2-one HO O L-sérine peptide coupling PO NH 3 6 1 2 PO 7 ACG STRATEGY 4 5 NH2CO2H OH N-alkylation INTERMOLECULAR PATHWAY 36 FORMATION OF N4-C5 LINKAGE BY N-ALKYLATION INTRAMOLECULAR PATHWAY (CAG Strategy) Y O R PO H2N PO H2N OP N H O OP N H PO PO O PO Y= Br, OTs R= O, O-(SO2)-O H2N NHP PO PO PO PO OP O N H OP NHP PO INTERMOLECULAR PATHWAY (ACG Strategy) O CHO NH2 H2N PO OP Reductive amination Y O R CHO NH2 O NHP PO PO OP O 37 FORMATION OF N4-C5 LINKAGE BY N-ALKYLATION : NUCLEOPHILIC ATTACK OF AN ACTIVATED PRIMARY CARBON INTERMOLECULAR PATHWAY NH HO O H 2N 2 1 tBuO PO P O 2C NHP N 3 PO TBDPSO BnO CO2H HO OP OBn OP2 TBDPSO O HCl 3M/AcOEt, RT, 1h. P1 P2 100 % NHBoc O2Bn CO OBn P1 OP N3 CO2tBu TBDMS-Cl, ImH, DMF, H H.HCl 0°C to RT, 15h. H2N CO2H BnO Opening conditions tBu100 % Bn H H.HCl Bn TBDMS tBu Bn NH3Cl tBuOH, NaH, 100°C Cs2CO3, DMF, 65°C CO2Bn TBDMSO Cs2CO3, DMF, 110°C+ - CO2Bn TBDMSO NH2100°C tBuOH, NaH, OP 70%110°C Cs2CO3, DMF, N TBDMS H ClOBn PO 3C-C(NH)-OtBu, MeOH, Et3N, 60°C cyclohexane, CH Cl , 2 2 CO2H 2tBu Yb(OTf)3CO , (Et DCM, TART, 2h. THF, 50°C, 3h. BnO 3N), DBU, NHFmoc P2 Yield NH3Cl BnO P1 NHFmoc % Yb(OTf)3, DCM, RT, 7100 days NHCHO - 25% BnO 65 % CO2tBu NH2 38 FORMATION OF N4-C5 LINKAGE BY N-ALKYLATION : NUCLEOPHILIC ATTACK OF AN ACTIVATED PRIMARY CARBON INTRAMOLECULAR PATHWAY O NHFmoc TBDPSO N H OBn O piperidine, deprotection DMF, RT X 65% TBDPSO epoxide opening O H2N N H HO NH X OBn O TBDPSO N H OBn O Acid conditions : Yb(OTf)3, (Et3N), CH2Cl2, RT, 6 days. LiNTf2, CH2Cl2, RT, 48h. Basic conditions : Cs2CO3, DMF, RT to 110°C, 20h. tBuOH, NaH, 100°C. « Neutral » conditions : MeOH, RT, 15 days. iPrOH, RT, 18h. iPrOH, 50°C, 4 days. 39 MOLECULAR MODELING OF AMINO-EPOXIDE Amine function involved in epoxide ring opening Primary carbon atom of epoxide ring H NH2 O H N O O O Si « -stacking » interactions « -stacking » interactions 40 N-ALKYLATION BY REDUCTIVE AMINATION SYNTHESIS OF PRECURSORS INVOLVED IN REDUCTIVE AMINATION PO 1/ Aldehyde derivatives PO PO O PO peptide PO LiBH4, MeOH, coupling O Et O, 0°C, 4h. NH N OH CO2Et OP O OTBDPS 2 1 83% target diazepanone 2 H 4 OTBDPS OP CO2P CHO CHO NHP PO DIBAL-H (1M POin toluene), CH2Cl2, -78°C, 2h. 96% PO OPO 44 CHO PO 2 1 3 O 4 93% acetonide NH2-aldehyde OP O acetonide -aldehyde functionalization of the diol moiety 11 CHO CHO 22 33 N33 N H 2N PO PO azido-aldehyde azido-aldehyde OP L-serine 1 (ClCO)2, DMSO, Et3N, CH2Cl32, -78°C, 2h. Reductive amination O 4 CO2P OP NH O O 2 OTBDPS PO H 2N O 2 reductive amination N3 OP reductive amination PO 3 CO2P O O HO NH PO OTBDPS CO2Et 2 CHO 1 NH2 functionalization of the diol moiety N PO NH 4 3 L-serine CO2P OP P= TBDPS 41 N-ALKYLATION BY REDUCTIVE AMINATION FUNCTIONALIZATION OF THE DIOL MOIETY TBDPSCl, R’ = H ImH, DMF, SYNTHESIS OF PRECURSORS 0°C to RT, 15h. R’ = TBDPS TBDPSO INVOLVED IN REDUCTIVE AMINATION TFA, H2O, THF, 0°C, 3h. NZ 2/ Serinyl derivatives OH 1/ Tf2O, 2,6-lutidine, Cl3C-C(NH)-OtBu, R'O CH2Cl2, -78°C, 2h. cyclohexane, CH2Cl2, CO2H BnO 50°C, 3h. 2/ NaN3, DMF, 0°C to RT, 15h. NHFmoc TBDPSO 4 1 2 BnBr, K2CO3, O CHO DMF, RT, 3h Bn BnO 1 N3 CO2R OBn O 100 % TBDPSO BnO OP CO2H NHBoc R1 PO reductive amination CHO EtI, OP3, N3 Cs2CO CH3CN, reflux, 1h30 100 % 1/ Step 1 2/ NaBH3CN, EtOH abs., 18 h. tBu tBu CO2R1 OBn O H 2N O BnO DBU, THF, RT, 2h.reductive 2/ NaBH3CN, EtOH abs., 18 h. amination NHFmoc Aldehyde derivative 3 R=Z 1/ tBu Step 1 CO 2 BnO ZCl, K2CO3, DMF, TA, 1h. NR CO2R1 OBn 100 % NH TBDPSO R=H R 1O 2C OBn NH2 100 % Step 1Y: reductive ZC YAR YTFA YTBDPS YAR YN3 amination l TFA, CH2Cl2, DIEA, DCM, 4Ả molecular CO84 min. 2Bn 84 sieves, 76 RT, 3094 84 85 RT, 15h. 100 % NHBoc Ti(OiPr)495 , DCM, RT, 58 83 3h 90 58 27 CO2tBu L-serine CHO TBDPSO 2 - 3 CO2Bn BnO 4 acetonide -aldehyde 27 47 TFA, CH2Cl47 2, RT, 30 min. CO2Et BnO 1 TBDPSO H2N 100 % NHBoc 4 1 R O 2C OBn L-serine TBDPSO O O 2H NH2.CF3CO Ti(OiPr)4, DCM, RT, 3h Et 1 CO2Et BnO CHO 2 3 NH2.CF3CO2H N3 azido-aldehyde 42 ACCESS TO THE SCAFFOLD BY DIRECT COUPLING CAG STRATEGY Y 1 PO 2 N-alkylation peptide coupling H 2N 6 PO 7 3 4 N H 5 O OH Y 4 PO PO NH C B 3 5 6 7 1N 2 H O PO H2N PO OH OH NH2 amino-butanol 1,4-diazepan-2-one HO O L-serine peptide coupling PO 4 NH 5 3 6 1 2 PO 7 NH2CO2H OH N-alkylation ACG STRATEGY 43 FORMATION OF N1-C2 LINKAGE BY PEPTIDE COUPLING NR2 R3O azido 1 reduction 1 OBn N3 CO2R TBDPSO Formation Bn Z TBDPS Reductive amination Et H TBDPS Reductive amination tBu H H Epoxide ring opening tBu H TBDPS Reductive amination R3 Bn Z TBDPS Et H TBDPS Azido reduction NH NH NR2 deprotection R2 = H R3 R33O 2 X AND TBDPSO Bu P deprotection TBDPSO 3 R2 R2 2 NR22 CO22R R111 OBn OBn H OBn NH22CO NH 2R N R1 R1 3 R33O TBDPSO TBDPSO R33O O R NH peptide coupling OBn OBn N N H H X O O TBDPSO TBDPSO Target diazepanone diazepanone Target Yield Deprotection Peptide Coupling Yield DCC, HOBt, DCM, RT - Yield H2, Pd/C 10 %, MeOH, AcOEt, RT, 24h. 1 nBu3P, toluene, RT (3h) to reflux (5h) OBn CO22H H OBn OBn NH22CO NH N H O 2 TFA, THF, H2O, RT, 15h. - tBu H H 51 HCO2NH4, Pd/C, MeOH, RT, 20 min tBu H TBDPS DCC/ HOBt, DIEA, DCM/ DMF, RT, 24h. PyBOP, DIEA, DCM, RT, 24h 100 TFA, DCM, RT, 20h. - 71 100 EDCI/ HOBt, DIEA, DCM/ DMF, RT, 24h. DCC, DIEA, DCM, RT. 44 - MOLECULAR MODELING OF THE « COMPLEX AMINO-ACIDS » -stacking interaction -stacking interaction O H O H 2N N H O H O O Si Si -stacking interaction « hydrophobic site » amine function involved in peptide coupling bis-O-silylated compound O H O NH2 H N H O acid function involved in peptide coupling HO hydrophobic interactions O Si Mono-O-silylated compound 45 CONCLUSION AND PERSPECTIVES OP ⇒ RING CLOSURE ? PO OP NP PO N 2 NH R PO CO2H ⇒ HOAt O OH HO R2 O O X NHP O PO O N-ALKYLATION R O PHN N3 OP 6 7 O 5 4N 3 1N H 2 NH2 O O-GLYCOSYLATION O PO N H O PEPTIDE COUPLING 46 TOWARDS A NEW FAMILY OF POTENTIAL ANTIBIOTICS 2 O 1 NR NHH 2N RHO O 3 RPO O PO OOBn O NH NHP 2 NHP OBn F OP CO2tBu H O N N NH 33 2 tBuO O H O OH O O HO O O R1, R2 , R3 = HO A OH O (CH2)n CH3 OH (CH2)n CO2H O N-Alkylation of L-serine tert-butyl ester + Intramolecular peptide Coupling + O-Glycosylation of diazepanone heterocycle NH N O A = OH, NH2, NHAc... Ribosyl-diazepanone scaffold + R 1 / R 2/ R 3 Family of powerful MraY inhibitors ⇒ Biologic evaluation (Laboratoire des Enveloppes Bactériennes et 47 Antibiotiques – Dr D. Blanot – Dr. D. Mengin-Lecreulx)
© Copyright 2026 Paperzz