Generalized Belief Propagation for Gaussian Graphical Model in probabilistic image processing Kazuyuki Tanaka Graduate School of Information Sciences, Tohoku University, Japan http://www.smapip.is.tohoku.ac.jp/~kazu/ Reference K. Tanaka, H. Shouno, M. Okada and D. M. Titterington: Accuracy of the Bethe Approximation for Hyperparameter Estimation in Probabilistic Image Processing, J. Phys. A: Math & Gen., 37, 8675 (2004). 6 September, 2005 SPDSA2005 (Roma) 1 Contents 1. 2. 3. 4. 5. Introduction Loopy Belief Propagation Generalized Belief Propagation Probabilistic Image Processing Concluding Remarks 6 September, 2005 SPDSA2005 (Roma) 2 Bayesian Image Analysis Noise Transmission Original Image Degraded Image Degradation Process PrioriProbability A PrDegraded Image Original ImagePrOriginal Image PrOriginal Image Degraded Image PrDegraded Image A PosterioriProbability MarginalLikelihood Graphical Model with Loops =Spin System on Square Lattice Bayesian Image Analysis + Belief Propagation → Probabilistic Image Processing 6 September, 2005 SPDSA2005 (Roma) 3 Belief Propagation Belief Propagation (Lauritzen, Pearl) Probabilistic model with no loop = Transfer Matrix Probabilistic model with some loops Approximation→Loopy Belief Propagation Generalized Belief Propagation (Yedidia, Freeman, Weiss) Loopy Belief Propagation (LBP) = Bethe Approximation Generalized Belief Propagation (GBP) = Cluster Variation Method How is the accuracy of LBP and GBP? 6 September, 2005 SPDSA2005 (Roma) 4 Gaussian Graphical Model f fi i fi , 1 1 1 2 2 f exp i f i gi ij f i f j Z 2 ijN 2 i Free energy ln Z f f df H and average f f df g H : matrix can be calculated by using the multi - dimensiona l Gauss integral formula. 6 September, 2005 1 H ij SPDSA2005 (Roma) 1 ij / i i j j ijN ij N ij / i 0 otherwise 5 Probabilistic Image Processing by Gaussian Graphical Model and Generalized Belief Propagation How can we construct a probabilistic image processing algorithm by using Loopy Belief Propagation and Generalized Belief Propagation? How is the accuracy of Loopy Belief Propagation and Generalized Belief Propagation? In order to clarify both questions, we assume the Gaussian graphical model as a posterior probabilistic model 6 September, 2005 SPDSA2005 (Roma) 6 Contents 1. 2. 3. 4. 5. Introduction Loopy Belief Propagation Generalized Belief Propagation Probabilistic Image Processing Concluding Remarks 6 September, 2005 SPDSA2005 (Roma) 7 Kullback-Leibler Divergence of Gaussian Graphical Model Qz dz F ln Z DQ Qz ln z 1 2 F i Vi mi g i i 2 1 2 ij Vi 2Vij V j mi m j ijN 2 Entropy Term Qz ln Qz dz Vi zi mi Qz dz 2 mi zi Qz dz 6 September, 2005 Vij zi mi z j m j Qz dz SPDSA2005 (Roma) 8 Loopy Belief Propagation Trial Function Tractable Form 6 September, 2005 Qij f i , f j Q f Qi f i i ijN Qi f i Q f j Qi f i f i zi Qz dz Qij f i , f j f i zi f j z j Qz dz SPDSA2005 (Roma) 9 Loopy Belief Propagation Qij f i , f j Q f Qi f i i ijN Qi f i Q f j Trial Function Marginal Distribution of GGM is also GGM Q f f z Qz dz 1 T 1 exp f m A f m 2 det A 1 2 m m A i 6 September, 2005 i ii Vi SPDSA2005 (Roma) A ij Vij 10 Loopy Belief Propagation Qij f i , f j Q f Qi f i i ijN Qi f i Q f j Q f 1 T 1 exp f m A f m 2 det A 1 2 F F mi ,Vi , Vij Bethe Free Energy in GGM 1 1 2 2 i Vi mi g i ij Vi 2Vij V j mi m j i 2 ijN 2 1 1 2 i 1 ln 2Vi 1 ln 2 det Aij 2 ijN 2 i 6 September, 2005 SPDSA2005 (Roma) 11 Loopy Belief Propagation 0 m g F mi ,Vi ,Vij mi i i 0 i F mi , Vi , Vij Vi i Vij m m 0 j ijN j ijN j i Ai 1 ij ij m is exact A 1 j ijN ii ij ij ij ii 0 0 1 1 2 1 1 4 V V ij i j 2 ij 6 September, 2005 i 1 1 1 Vi i ij Aij i j ijN j ijN Vij ij 0 A F mi , Vi , Vij m H 1g SPDSA2005 (Roma) Vi Vij Aij V V j ij 12 Iteration Procedure V Ψ V * Fixed Point Equation * Iteration V (1) V ( 2) V ( 3) Ψ V Ψ V Ψ V (0) y (1) V (1) ( 2) 0 yx y (x) V * V (1) M (0) x 6 September, 2005 SPDSA2005 (Roma) 13 Loopy Belief Propagation and TAP Free Energy 1 2 Loopy Belief Propagation Vij 1 1 4 V V ij i j 2 ij 1 ij Aij ij 0 3 2 2 5 ijViV j ij Vi V j O ij A ii Vi A ij Vij 0 ij TAP Free Energy F mi , Vi , Vij Mean Field Free Energy 1 1 2 2 i Vi mi g i ij Vi V j mi m j i 2 ijN 2 1 1 2 4 1 ln 2Vi ij ViV j O ij 2 2 ijN i 6 September, 2005 SPDSA2005 (Roma) 14 Contents 1. 2. 3. 4. 5. Introduction Loopy Belief Propagation Generalized Belief Propagation Probabilistic Image Processing Concluding Remarks 6 September, 2005 SPDSA2005 (Roma) 15 Generalized Belief Propagation Cluster: Set of nodes Subcluster ' and ' Basic Cluster Set B : B and ' B ' B C B ' for B and ' B 1 Every subcluster of the element of B does not belong to B. 1 2 3 4 6 September, 2005 2 1 3 3 4 B ' ' , 'C ' C B Example: System consisting of 4 nodes 1 2 12 1, 12 2, 23 2, 23 3, 4 34 3, 34 4, 14 1, 14 4 12 23 34 14 1 1 2 3 4 1 SPDSA2005 (Roma) 16 Selection of B in LBP and GBP LBP (Bethe Approx.) 1 1 2 4 B 2 2 3 6 5 4 5 5 6 8 8 8 9 1 2 3 4 5 6 7 7 7 8 9 1 2 2 3 4 5 5 6 4 5 5 6 7 8 8 9 6 September, 2005 B GBP (Square Approx. in CVM) 4 5 SPDSA2005 (Roma) 3 6 9 17 Selection of B and C in Loopy Belief Propagation LBP (Bethe Approx.) B The set of Basic Clusters 6 September, 2005 SPDSA2005 (Roma) C The Set of Basic Clusters and Their Subclusters 18 Selection of B and C in Generalized Belief Propagation GBP (Square Approximation in CVM) B The set of Basic Clusters 6 September, 2005 SPDSA2005 (Roma) C The Set of Basic Clusters and Their Subclusters 19 Generalized Belief Propagation Q f Qf Trial Function C Marginal Distribution of GGM is also GGM Q f f z Qz dz A V A V ii i ij ij 1 T 1 exp f m A f m 2 det A 1 2 F F mi , Vi , Vij 1 1 2 2 i Vi mi g i ij Vi 2Vij V j mi m j i 2 ijN 2 1 1 ln 2 det A 2 C 6 September, 2005 SPDSA2005 (Roma) 20 Generalized Belief Propagation F mi ,Vi ,Vij 0 i mi gi ij mi m j 0 mi j j ,i , C 0 F mi , Vi , Vij Vi i j 0 F mi ,Vi ,Vij Vij V Ψ V 6 September, 2005 ij ij j ,i , B i m H 1g m is exact i , C , j , C 1 A 0 ii A 1 ij 0 V Vi ,Vij i , ij N SPDSA2005 (Roma) 21 Contents 1. 2. 3. 4. 5. Introduction Loopy Belief Propagation Generalized Belief Propagation Probabilistic Image Processing Concluding Remarks 6 September, 2005 SPDSA2005 (Roma) 22 Bayesian Image Analysis Noise Transmission Original Image Degraded Image Degradation Process PrioriProbability A PrDegraded Image Original ImagePrOriginal Image PrOriginal Image Degraded Image PrDegraded Image A PosterioriProbability MarginalLikelihood 6 September, 2005 SPDSA2005 (Roma) 23 Bayesian Image Analysis f i , gi , Degradation Process g i f i ni ni ~ N 0, 2 P g f , i 1 1 2 exp 2 f i gi 2 2 Additive White Gaussian Noise Transmission Original Image 6 September, 2005 Degraded Image SPDSA2005 (Roma) 24 Bayesian Image Analysis f i , g j , A Priori Probability 1 P f exp f i f j Z P R ijB 2 1 2 Generate Similar? Standard Images 6 September, 2005 SPDSA2005 (Roma) 25 Bayesian Image Analysis P f g , , Original Image f Degraded Image g A Posteriori Probability P f g , , Pg f , P f P g , 1 Wij f i , f j Z POS g, , ijB 1 1 1 2 2 Wij f i , f j exp 2 f i g i 2 f j g j f i f j 2 2 8 8 Gaussian Graphical Model 6 September, 2005 SPDSA2005 (Roma) f i , g j , 26 Bayesian Image Analysis P f A Priori Probability y Pixels Pg f , f Original Image Degraded Image f fi i x A Posteriori Probability g g P f g, , Degraded Image g gi i P g f , P f P g , ˆf f P f g, , df f P f g, , df i i i i i 6 September, 2005 SPDSA2005 (Roma) 27 Hyperparameter Determination by Maximization of Marginal Likelihood ˆ , ˆ arg max Pg , f i P f g , ˆ , ˆ df Pg , Pg f , P f df , fˆi P f , g , Pg f , P f y P f Pg f , f g g x Marginalization Original Image f fi i 6 September, 2005 Pg , Marginal Likelihood SPDSA2005 (Roma) g Degraded Image g gi i 28 Maximization of Marginal Likelihood by EM (Expectation Maximization) Algorithm Pg f , P f df Marginal P g , Likelihood y x Q-Function Q , ' , ' , g P f g , ' , 'ln P f , g , df P g , 0 Incomplete Data g gi i Equivalent 0 Q , ' , ' , g ', ' 6 September, 2005 SPDSA2005 (Roma) 29 Maximization of Marginal Likelihood by EM (Expectation Maximization) Algorithm Pg f , P f df Marginal P g , Likelihood y x Q-Function Q , ' , ' , g P f g , ' , 'ln P f , g , df EM Algorithm Iterate the following EM-steps until convergence: E - Step : Q , t , t P f g, t , t ln P f , g , df . M - Step : t 1, t 1 arg max Q , t , t . , A. P. Dempster, N. M. Laird and D. B. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” J. Roy. Stat. Soc. B, 39 (1977). 6 September, 2005 SPDSA2005 (Roma) 30 Image Restoration The original image is generated from the prior probability. (Hyperparameters: Maximization of Marginal Likelihood) Degraded Image ( 40) Original Image ( 0.001) Mean-Field Method Loopy Belief Propagation Exact Result ˆ 0.000298 ˆ 0.000784 ˆ 0.001090 ˆ 29.1, MSE 538.5 ˆ 37.8, MSE 302.8 ˆ 39.4, MSE 297.6 6 September, 2005 SPDSA2005 (Roma) 31 Numerical Experiments of Logarithm of Marginal Likelihood The original image is generated from the prior probability. (Hyperparameters: Maximization of Marginal Likelihood) Original Image ( 0.001) Degraded Image ( 40) MFA -5.0 -5.0 MFA 1 ln Pg ˆ , || LPB 1 ln Pg , ˆ || -5.5 Exact LPB Exact -6.0 10 20 30 40 50 60 -5.5 0 0.0010 0.0020 Mean-Field Method Loopy Belief Propagation Exact Result ˆ 0.000298, ˆ 29.1 ˆ 0.000784, ˆ 37.8 ˆ 0.00109, ˆ 39.4 6 September, 2005 SPDSA2005 (Roma) 32 Numerical Experiments of Logarithm of Marginal Likelihood Original Image ( 0.001) EM Algorithm with Belief Propagation 0.002 Degraded Image ( 40) Exact ˆ 0.00109, ˆ 39.4 LBP ˆ 0.000784, ˆ 37.8 MF ˆ 0.000298, ˆ 29.1 0.001 LPB MFA 0 0 6 September, 2005 Exact SPDSA2005 (Roma) 50 t 100 33 Image Restoration by Gaussian Graphical Model Original Image Degraded Image EM Algorithm with Belief Propagation MSE: 1512 MSE: 1529 6 September, 2005 SPDSA2005 (Roma) 34 Image Restoration by Gaussian Graphical Model Original Image Degraded Image Mean Field Method MSE:611 MSE: 1512 LBP MSE:327 6 September, 2005 TAP GBP MSE:320 MSE: 315 SPDSA2005 (Roma) MSE Exact Solution MSE:315 2 1 f x, y fˆx, y | | x, y 35 Image Restoration by Gaussian Graphical Model Original Image LBP MSE:260 6 September, 2005 Degraded Image Mean Field Method MSE: 1529 MSE: 565 Exact Solution TAP MSE:248 GBP MSE:236 SPDSA2005 (Roma) MSE MSE:236 2 1 f x, y fˆx, y | | x, y 36 Image Restoration by ˆ , ˆ arg max Pg , , Gaussian Graphical Model 40 40 MSE 2 1 f x, y fˆx, y | | x, y 6 September, 2005 MSE ̂ ̂ ln Pg ˆ , ˆ MF 611 0.000263 26.918 -5.13083 LBP 327 0.000611 36.302 -5.19201 TAP 320 0.000674 37.170 -5.20265 GBP 315 0.000758 37.909 -5.21172 Exact 315 0.000759 37.919 -5.21444 MSE ̂ ̂ ln Pg ˆ , ˆ MF 565 0.000293 26.353 -5.09121 LBP 260 0.000574 33.998 -5.15241 TAP 248 0.000610 34.475 -5.16297 GBP 236 0.000652 34.971 -5.17256 Exact 236 0.000652 34.975 -5.17528 SPDSA2005 (Roma) 37 Image Restoration by Gaussian Graphical Model and Conventional Filters 40 MSE GBP MSE 611 LBP 327 TAP 320 GBP 315 Exact 315 Lowpass Filter (3x3) 388 (5x5) 413 Median Filter (3x3) 486 (5x5) 445 Wiener Filter (3x3) 864 (5x5) 548 2 1 f x, y fˆx, y | | x, y 6 September, 2005 MF MSE (3x3) Lowpass (5x5) Median SPDSA2005 (Roma) (5x5) Wiener 38 Image Restoration by Gaussian Graphical Model and Conventional Filters 40 MSE GBP MSE 565 LBP 260 TAP 248 GBP 236 Exact 236 Lowpass Filter (3x3) 241 (5x5) 224 Median Filter (3x3) 331 (5x5) 244 Wiener Filter (3x3) 703 (5x5) 372 2 1 f x, y fˆx, y | | x, y 6 September, 2005 MF MSE (5x5) Lowpass (5x5) Median SPDSA2005 (Roma) (5x5) Wiener 39 Contents 1. 2. 3. 4. 5. Introduction Loopy Belief Propagation Generalized Belief Propagation Probabilistic Image Processing Concluding Remarks 6 September, 2005 SPDSA2005 (Roma) 40 Summary Generalized Belief Propagation for Gaussian Graphical Model Accuracy of Generalized Belief Propagation Derivation of TAP Free Energy for Gaussian Graphical Model by Perturbation Expansion of Bethe Approximation 6 September, 2005 SPDSA2005 (Roma) 41 Future Problem Hyperparameter Estimation by TAP Free Energy is better than by Loopy Belief Propagation. Effectiveness of Higher Order Terms of TAP Free Energy for Hyperparameter Estimation by means of Marginal Likelihood in Bayesian Image Analysis. TAP Free Energy F mi , Vi , Vij Mean Field Free Energy 1 1 2 2 i Vi mi g i ij Vi V j mi m j i 2 ijN 2 1 1 2 4 1 ln 2Vi ij ViV j O ij 2 2 ijN i 6 September, 2005 SPDSA2005 (Roma) 42
© Copyright 2026 Paperzz