A prototype Global Carbon Cycle Data Assimilation System (CCDAS) Marko Scholze1, Wolfgang Knorr2, Peter Rayner3,Thomas Kaminski4, Ralf Giering4 1 2 3 4 FastOpt Overview • Top-down vs. bottom-up • Gradient method and optimisation • Results: Optimal fluxes • Uncertainties in parameters + results • Uncertainties in fluxes + results • Possible assimilation of flux data • Conclusions and Outlook FastOpt Top-down / Bottom-up atm. CO2 data inverse atmospheric transport modelling net CO2 fluxes at the surface process model climate and other driving data FastOpt Carbon Cycle Data Assimilation Misfit 1 Forward modelling: Parameters –> Misfit Misfit to Observations Adjoint or Tangent linear model: Station Conc. 6,500 Atmospheric Transport Model: TM2 Misfit / ∂ Parameters parameter optimization Fluxes: 800,000 Biosphere Model: BETHY Parameters: 58 FastOpt Cost Function J(m) Gradient Method First derivative (Gradient) of J(m) w.r.t. m (model parameters) : –∂J(m)/∂m yields direction of steepest descent Figure taken from Tarantola '87 Space of m (model parameters) FastOpt Carbon Cycle Data Assimilation System (CCDAS) Assimilated veg. index satellite + Uncert. CCDAS Step 1 full BETHY Background CO2 fluxes* Prescribed Assimilated Phenology Hydrology CO2 + Uncert. CCDAS Step 2 BETHY+TM2 only Photosynthesis, Energy&Carbon Balance Optimized Params + Uncert. Diagnostics + Uncert. * * ocean: Takahashi et al. (1999), LeQuere et al. (2000); emissions: Marland et al. (2001), Andres et al. (1996); land use: Houghton et al. (1990) FastOpt BETHY (Biosphere Energy-Transfer-Hydrology Scheme) • • • lat, lon = 2 deg GPP: C3 photosynthesis – Farquhar et al. (1980) C4 photosynthesis – Collatz et al. (1992) stomata – Knorr (1997) Raut: maintenance respiration = f(Nleaf, T) – Farquhar, Ryan (1991) growth respiration ~ NPP – Ryan (1991) Rhet: k fast/slow pool resp. = w Q10 T/10 C fast/slow / t fast/slow t slow –> infin. average NPP = b average Rhet (at each grid point) t=1h t=1h t=1day b<1: source b>1: sink FastOpt Optimisation FastOpt global fluxes Optimised fluxes (1) Major El Niño events Major La Niña event Post Pinatubo Period FastOpt normalized CO2 flux and ENSO lag correlation (low-pass filtered) Optimised fluxes (2) ENSO and terr. biosph. CO2: correlation seems strong correlation between Niño-3 SST anomaly and net CO2 flux shows maximum at 4 months lag, for both El Niño and La Niña states FastOpt Optimised fluxes (3) flux sites? net CO2 flux to atm. gC / (m2 month) during El Niño (>+1s) lagged correlation at 99% significance -0.8 -0.4 0 0.4 0.8 FastOpt Error Covariances in Parameters J(x) Second Derivative (Hessian) of J(m): ∂2J(m)/∂m2 yields curvature of J, provides estimated uncertainty in mopt Figure taken from Tarantola '87 Space of m (model parameters) FastOpt Error Covariances in Parameters Cost function (misift): model diagnostics measurements 1 1 -1 -1 J(m) [m m0 ]Cm0 [m m0] [y (m) y 0 ]Cy [y (m) y 0 ] 2 2 assumed model parameters a priori covariance matrix of parameter + model error a priori parameter values Vm(TrEv) Vm(EvCn) Vm(C3 Gr) Vm(Crop) first gues s µm ol/m 2 optimized s µm ol/m 60 .0 29 .0 42 .0 11 7.0 J Cm 2 mi, j prior unc. 2 s % 43 .2 32 .6 18 .0 45 .4 1 2 Error covariance of parameters after optimisation: examples: error covariance matrix of measurements opt.unc . Vm(TrEv) % 20 .0 20 .0 20 .0 20 .0 10 .5 16 .2 16 .9 17 .8 0.28 0.02 -0.02 0.05 = inverse Hessian Vm(EvCn) Vm(C3 Gr) Vm(Crop) erro r co va riance 0.02 -0.02 0.65 -0.10 -0.10 0.71 0.08 -0.31 0.05 0.08 -0.31 0.80 FastOpt Relative Error Reduction FastOpt Error Covariances in Diagnostics Error covariance of diagnostics, y, after optimisation (e.g. CO2 fluxes): yi (mopt) y i (mopt) Cm Cy (mopt) m j m j T adjoint or tangent linear model error covariance of parameters FastOpt Regional Net Carbon Balance and Uncertainties FastOpt Comparison shows impact of a (pseudo) flux measurement in the broadleaf evergreen biome on Q10 estimated by an inversion of SDBM: Upper panel: only concentration data Lower panel: concentration data + pseudo flux measurement (mean: as predicted sigma: 10gC/m^2/year) a priori mean/uncertainties a posteriori mean/uncertainties Details: Kaminski et al., GBC, 2001 FastOpt Conclusions • CCDAS with 58 parameters can already fit 20 years of CO2 concentration data • Sizeable reduction of uncertainty for ~13 parameters • terr. biosphere response to climate fluctuations dominated by ENSO • System can test model with uncertain parameters, and deliver a posteriori uncertainties on parameters, fluxes FastOpt Outlook • explore more parameter configurations • include fire as a process with uncertainties • need more constraints, e.g. eddy fluxes –> reduce uncertainties • however: needs to solve scaling problem (satellites?) • approach can be regionalized easily • extend approach to ocean carbon cycle • projection of uncertainties into future FastOpt
© Copyright 2026 Paperzz