Johann Wolfgang Goethe-Universität Frankfurt Institut für Theoretische Physik The importance of multiparticle collisions in heavy ion reactions C. Greiner The Physics of High Baryon Density IPHC Strasbourg, Sept. 2006 • Motivation: chemical equilibration of anti-baryons • Equilibration by potential Hagedorn states • Thermalization at RHIC by • Outlook Exploring the phases of nuclear matter Strangeness production at SpS energies J. Geiss Production of Antihyperons: QGP signature…? P. Koch, B. Müller, J. Rafelski Production of Anti-Baryons Multimesonic channels R.Rapp and E. Shuryak, Phys.Rev.Lett.86 (2001) 2980 C.Greiner and S.Leupold, J.Phys. G27 (2001) L95 C.Greiner, AIP Conf. Proc. 644:337 (2003) production at RHIC Thermal rates within chiral SU(3) description Chemical population of baryons / anti-baryons: I. Shovkovy, J. Kapusta P. Huovinen, J. Kapusta Insufficient by a factor of 3 to 4 Chemical Freeze-out and of QCD (P. Braun-Munzinger, J. Stachel, C. Wetterich, Phys.Lett.B596:61-69 (2004)) Hadronic resonance gas vs. lattice: Chemical equilibration of baryon / anti-baryons: Multimesonic channels: Possible solution by Hagedorn states C. Greiner, P. Koch, F. Liu, I. Shovkovy, H. Stöcker J.Phys.G31 (2005) Hagedorn gas close to • Hagedorn spectrum: K. Redlich et al, K. Bugaev et al • Hagedorn like excitations in transport models: RQMD HSD Estimate for baryon/antibaryon production Microcanonical decay of HS (Fuming Liu) Master Equations for the decay HS→nπ+BaB dNR(i)/dt=-GiNR(i)+nGi,p < i,n(T) (Np)nBi! np+Gi,BaB<i,<n>BaB (T)(Np )<n> N2BaB dNp /dt=i nGi,pnBi! np(NR(i)-< (T) (Np )n)+i Gi,BaB<n>(NR(i)-<i,<n>BaB(T)(Np )<n>N2BaB) dNBaB/dt=-iGi,BaB(NBaB2 Np<n> < i,<n>(T)-NR(i)) J. Noronha-Hostler Considering the decay HS→nπ HS→nπ+BaB Nπ (t=0)=Equilibrium NRes(t=0)=0 Nπ (t=0) =Equilibrium NRes(t=0)=Equilibrium HS→nπ+BaB when the Hagedorn Resonances start at twice equilibrium values and the rest starts at zero. HS→nπ+BaB when the Hagedorn Resonances start at twice equilibrium values and the rest starts at equilibrium. The strange sector of baryons/antibaryons Importance of baryonic HS CBM? The order and shape of QGP phase transition nucl-th/0605052, I. Zakout, CG and J. Schaffner-Bielich 1 4 density of states: (m, v) ~ c m ( 2 ) e m TH [ B ] (m 4Bv ) (B ) Thermalization at RHIC elliptic flow --- `early signature´ of QGP dNh dpT2 dyd dpdN2 dyh p1 (1 2v cos 2v 1 2 cos 2 ...) T evidence for an early buildup of pressure and a fast thermalization of the quark-gluon system • How can one describe the fast thermalization by the partonic collisions? • How can one understand the hydrodynamical behavior by the partonic collisions? transport simulation: on-shell parton cascade Z. Xu and C. Greiner, PRC 71, 064901 (2005) solving the Boltzmann-equations for quarks and gluons p f ( x, p) Cgg gg ( x, p) Cgg ggg ( x, p) (Z)MPC, VNI/BMS new development Initial production of partons minijets d jet abcd d 2 2 K x f ( x , p ) x f ( x , p 1 a 1 t 2 b 2 t ) 2 dt a ,b;c ,d dpt dy1dy2 string matter P.Danielewicz, G.F.Bertsch, Nucl. Phys. A 533, 712(1991 A.Lang et al., J. Comp. Phys. 106, 391(1993) Stochastic algorithm cell configuration in space for particles in D3x with momentum p1,p2,p3 ... D3x collision probability: parton scatterings in leading order pQCD M gg gg M gg ggg 2 2 9g 4 s2 , 2 2 2 2 ( q mD ) 9g 4 s2 12 g 2 q2 2 2 2 2 2 2 2 ( q m ) k ( k D q ) mD I 32 LPM Dt for 2 2 P22 vrel 22 3 Dx Dt for 2 3 P23 vrel 23 3 Dx I 32 Dt for 3 2 P32 8E1 E2 E3 (D3 x) 2 1 d 3 p1' d 3 p2 ' 2 4 ( 4) M ( p1 p2 p3 p1' p2 1231' 2 ' ( 2p ) 3 3 2 (2p ) 2 E1' (2p ) 2 E2 ' the central region: h: [-0.5:0.5] and xt < 1.5 fm including gg<>ggg thermalization and hydrodynamical behavior without gg<>ggg NO thermalization and free streaming transverse energy at y=0 in Au+Au central collision elliptic flow in noncentral Au+Au collisions at RHIC: peripheral central Comparison with RHIC data Conclusions and Outlook • Potential Hagedorn states as additional dof can explain and also strange baryon production close to ; (re-)population and decay are governed by detailed balance • Three main assumptions: (1): (2): (3): microcanonical statistical decay • Multiparticle interactions also important for very high energies ( ) • Future: Embedding into UrQMD Nonequilibrium dilepton production Spectral function (B. Schenke) of the ρ-meson: free ρ in-medium CERES → quantum “off-shell”-transport description Non-equilibrium dilepton production rate: Contributions to the rate at time τ at constant energy ω Evolving spectral function B. Schenke, C. Greiner, Phys.Rev.C73:034909 (2006) and dilepton rate Dilepton yields from fireball (B. Schenke) Dropping mass (linearly in time) and resonance coupling scenarios for k=0: 3.0 Dynamic Markov 2.5 2.0 -3 dN/dM [10 GeV -1 ] Dropping mass scenario integrated over momenta: B. Schenke, C. Greiner, Phys.Rev.C73:034909 (2006) B. Schenke, C. Greiner, arXiv:hep-ph/0608032 (2006) 1.5 1.0 0.5 0.0 0.2 0.4 0.6 M [GeV] 0.8 1.0
© Copyright 2026 Paperzz