What is the Space of Camera Responses? Michael Grossberg and Shree Nayar CAVE Lab, Columbia University IEEE CVPR Conference June 2003, Madison, USA Partially funded by NSF ITR Award, DARPA/ONR MURI The Camera Response 0 255 Scene Radiance Linear Function (Optical Attenuation) Image Irradiance Non-Linear Camera Response Image Intensity L s E f B Impact of Camera Response Accurate scene radiance required for Color Constancy Photometric Stereo Measuring BRDF from Images Creating Accurate High Dynamic Range Images Shape from Shading Inverse Rendering Response Model for Recovery Charts: Known Reflectance [Sawchuk, 77 Chang and Reid, 96] Multiple Images: Changing Exposure [Debevec and Malik, 1997, Mann, 2000, Mann and Picard, 1995, Mitsunaga and Nayar, 1999, Tsin et al., 2001] Model Required for Interpolation Breaking Ambiguities [Grossberg, Nayar, 2002] Response Normalization and Monotonicity Saturation Level Camera Response Normalize 0 Dark Current Level f Intensity B Intensity B 1 0 Irradiance E 1 Irradiance E Monotonicity Key Property: Makes response invertible Space of Response Functions The space of all functions with f (0) 0 Let B1 f (1) Space of theoretical response functions B1 0 1 Inequalities: f ( E ) 0 Cone of monotonic functions Linear Model of Response f f f 0 c1h1 c2 h2 h h2 f0 f0 h1 • M-order linear approximation model: f ( E ) f 0 n1 cn hn ( E ) M base response parameters of model basis functions Choosing a Basis • Possible basis h1, h2, … f 0 ( E ) E, hn ( E ) E E n 1 Intensity Polynomial basis h4 h3 h2 Irradiance h1 Trigonometric basis • Which basis is best? – Depends on which response functions occur h3 Intensity f 0 ( E ) E, hn ( E ) sin( nE ) h1 h4 h2 Irradiance Database of Response Functions (DoRF) Collected 201 response curves from: Film Positive, negative, consumer, professional, color, b/w Agfacolor Futura Agfachrome RX-II Fuji F125 Fuji FDIC Kodak Advanced Kodak Gold … CCDs Kodak's KAI and KAF series … Digital/Video Sony DC 950 Canon Optura Gamma curves … Sample curves Kodak Ektachrome-100plus Green Cannon Optura Kodak DCS 315 Green 0.9 Sony DXC-950 1 Kodak Ektachrome-64 Green Agfachrome CTPrecisa100 Green Agfacolor Futura 100 Green 0.7 Agfacolor HDC 100 plus Green 0.6 Agfacolor Ultra 050 plus Green 0.5 Normalized Brightn Agfapan APX 025 0.4 Agfa Scala 200x Fuji F400 Green 0.3 Fuji F125 Green 0.2 Kodak Max Zoom 800 Green gamma curve, g =0.6 gamma curve, g =1.0 g 0 gamma curve, =1.4 1 gamma curve, g =1.8 0.1 Kodak KAI0372 CCD Kodak KAF2001 CCD Intensity 0.8 Agfachrome RSX2 050 Blue 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Irradiance Evaluate Bases Using DoRF: Good basis provides good approximation with few parameters Empirical Model of Response (EMoR) Build Basis using DoRF •175 training curves, 26 testing curves •Apply PCA to DoRF f0, h1, h2, …. •99.5% of energy in first 3 dimensions Response Principal Components 0.8 Normalized Intensity Intensity 1 0.6 0.4 0.2 0 h4 0.04 h2 Normalized 0 -0.04 h3 h1 -0.08 0 0.2 0.4 0.6 Irradiance 0.8 1 0 0.2 0.4 0.6 Irradiance 0.8 1 Energy 100 98 96 94 92 90 88 86 84 82 Percent of Energy 80 1 2 3 4 5 6 7 8 9 10 Percent Mean Curve Response Principal Components Log Model of Response (Log EMoR) basis functions base response Log basis: f0 ( E ) hn ( E ) c n M f (E) e n 1 (e ) •Log model •Generalizes gamma curves parameters of model Log EMoR •Apply PCA to Log DoRF •99.6% of energy in first 3 dimensions Principal Components 0.6 0.4 0.2 0 h4 0.04 0.8 Intensity Intensity 1 h2 0 h3 h1 -0.04 -0.08 0 0.2 0.4 0.6 Irradiance 0.8 1 0 Energy Percent Mean Curve 0.2 0.4 0.6 Irradiance 0.8 1 100 98 96 94 92 90 88 86 84 82 80 1 2 3 4 5 6 7 8 9 10 Principal Components Monotonic Approximation Monotonicity: Least Squares error: arg min || f f 0 cn hn ||2 ( f 0 cn hn )( E ) 0 c Linear inequalities in cn Quadratic Programming 2 Principal Components 6 Gamma Curves Other DoRF Curves Derivative at Unity Gamma = 2.5 Monotonic functions 5 4 Gamma = 0.2 3 2 1 0 Derivative at Unity -1 -5 0 5 10 15 20 25 30 35 Derivative at Origin 40 45 EMoR/Log EMoR Model Evaluation 1 2 3 4 5 6 7 8 9 10 11 Accuracy: 6.8 bits Mean RMSE Mean Disparity 4.12E-02 9.07E-02 1.94E-02 4.77E-02 8.87E-03 2.60E-02 4.15E-03 1.51E-02 2.82E-03 1.05E-02 1.91E-03 8.09E-03 1.58E-03 7.46E-03 1.15E-03 4.96E-03 9.10E-04 4.30E-03 7.60E-04 3.95E-03 6.02E-04 3.12E-03 9.0 bits 8.3 bits Log EMoR Model Parameters Parameters EMoR Model 1 2 3 4 5 6 7 8 9 10 11 Accuracy: 6.8 bits Mean RMSE Mean Disparity 7.04E-02 1.11E-01 1.71E-02 3.44E-02 8.83E-03 1.85E-02 4.99E-03 1.11E-02 3.44E-03 8.14E-03 2.80E-03 6.58E-03 2.52E-03 5.77E-03 1.67E-03 4.12E-03 1.36E-03 3.36E-03 1.79E-03 4.14E-03 9.54E-04 2.49E-03 8.4 bits 8.6 bits Models Compared RMSE Error Parameters Model 1 2 3 4 Gamma 3.46E-02 N. A. N. A. N. A. Polynomial 7.37E-02 3.29E-02 1.71E-02 1.06E-02 Trigonometric 6.83E-02 3.91E-02 2.58E-02 1.89E-02 EMoR 4.00E-02 1.73E-02 6.27E-03 2.54E-03 Accuracy: 4.8 bits 5.9 bits 5.3 bits 5 6 7 N. A. N. A. N. A. 6.93E-03 4.95E-03 3.65E-03 1.44E-02 1.16E-02 9.46E-03 1.77E-03 1.07E-03 9.55E-04 7.3 bits Disparity Error Parameters Model 1 2 3 4 5 6 7 Gamma 2.52E-01 N. A. N. A. N. A. N. A. N. A. N. A. Polynomial 4.22E-01 2.90E-01 2.12E-01 1.51E-01 1.16E-01 8.96E-02 7.55E-02 Trigonometric 4.12E-01 3.30E-01 2.74E-01 2.32E-01 2.01E-01 1.77E-01 1.57E-01 EMoR 3.04E-01 1.38E-01 8.54E-02 4.90E-02 3.15E-02 2.25E-02 1.86E-02 Accuracy: 2.0 bits 2.2 bits 1.9 bits 3.9 bits Response from Sparse Samples Camera Response Normalized Intensity 1 0.8 0.6 Brightness 0.4 Normalized 0.2 0 0 Monotonic EMoR Monotonic polynomial EMoR Polynomial Chart values used for fit Other chart values 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Normalized Irradiance 1 Response from Multiple Images Inverse Camera Response Normalized Intensity 1 0.8 Monotonic EMoR Mitsunaga-Nayar (Polynomial) Debevec-Malik l = 8 (Log space) Debevec-Malik l = 32 (Log space) Debevec-Malik l = 128 (Log space) Data from chart 0.6 0.4 0.2 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Normalized Irradiance 1 Summary • Determined Space of Response functions – Intersection of cone and plane • Linear and Log approximation models – Generalized previous models • Database of Response Functions (DoRF) – Evaluate models • Empirical Model of Response (EMoR) – Superior model of camera response based on DoRF • DoRF and EMoR available for download from www.cs.columbia.edu/CAVE
© Copyright 2026 Paperzz