Supporting information for Two cationic porphyrin isomers showing different multimeric G-quadruplex recognition specificity against monomeric G-quadruplexes Xiao-Xi Huang1,2, Li-Na Zhu2,3, Bin Wu3, Yan-Fang Huo3, Na-Na Duan1,2 and De-Ming Kong1,2,* 1 State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P R China 2 Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, P R China 3 Department of Chemistry, Tianjin University, Tianjin, 300072, P R China * Corresponding authors: De-Ming Kong. Tel: (+)86-22-23500938; Fax: (+)86-22-23502458; Email: [email protected] 1. Synthesis and Characterization of 5,10,15,20-tetra-{3-[2-(1-methyl-1- piperidinyl) ethoxy] phenyl} porphyrin tetraiodide (m-TMPipEOPP) 1.1 Synthesis and characterization of 5,10,15,20-tetrakis (3-hydroxyphenyl) porphyrin (THPP). A suspension of 3-Hydroxybenzaldehyde (6.1 g, 0.05 mol) was dissolved in 100 mL propionic acid/DMSO (dimethyl sulfoxide) (v:v = 47:3) and the mixture was stirred at 128 oC. Then, 3.5 mL (0.05 mol) of freshly prepared pyrrole was added. The mixture was heated to 141 oC and refluxed for 2h, then, cooled to room temperature and filtrated under reduced pressure. The crude residue was redissolved in CH2Cl2 or CH2Cl2/CH3OH mixture, and purified using silica gel columns (100–200 mesh). CH2Cl3/MeOH mixture (v:v = 7:1) was used to elute the pure product. The purple solid of the product was obtained in 7.04% yield (0.5978g, 0.88 mmol). 1H NMR (300 MHz, [D6]DMSO, 25 ºC, TMS) (Figure S1): δ = 9.89 (s, 4H; phenolic hydroxyl H), 8.86 (s, 8H; β-pyrrole H), 7.53 (s, 12 H; Ph-H), 7.23 (s, 2H; Ph-H), 7.20 (s, 2H; Ph-H), -2.99 ppm (s, 2H; pyrrole H); ESI:m/z: calcd for C44H30N4O4[M+H+]: 679.23; found: 679.64[M+H+]. FT-MS: m/z: calcd for C44H30N4O4: 679.23398; found: 679.2338[M]. Figure S1. 1H-NMR of 5,10,15,20-tetrakis(3-hydroxyphenyl)porphyrin (THPP). The NMR spectra were recorded on Mercury Vx-300 spectrometer operating for 1H NMR. Chemical shifts in the 1H NMR spectra are reported in ppm relative to the residual hydrogen atoms in the deuterated solvents: d = 2.50 and 7.25 ppm for [D6]DMSO and CDCl3, respectively. 1.2 Synthesis and characterization of 5,10,15,20-tetra-{3-[2-(1-piperidinyl) ethoxy]phenyl} porphyrin (TPipEOPP). A suspension of 5,10,15,20-tetrakis (3-hydroxyphenyl) porphyrin (THPP) (0.2172g, 0.32 mmol), 1-(2-chloroethyl)-piperidine hydrochloride (0.4714 g, 2.56 mmol), and K2CO3 (0.6192g, 4.48 mmol) in dry DMF (50 mL) was stirred for 72 h at room temperature under N2. Then the mixture was filtered. The red-brown precipitate was obtained and washed with DMF (10 mL) and diethyl ether (5 mL). The residue was dissolved in dichloromethane (100 mL) and washed with water. The organic layer was evaporated under reduced pressure. The resulting solid was isolated by chromatography on alumina (100-200 mesh) with ethyl acetate /methanol (v:v = 50:1). The first fraction was collected and the solvent was evaporated. Further purification was carried out by recrystallization from CH3OH/CH2Cl2 (v:v = 20:1). The purple-brown crystals of the product TPipEOPP were obtained in 56.9% yield (0.124 g, 0.11 mmol). 1H NMR (300 MHz, CDCl3, 25 oC, TMS) (Figure S2): δ = 8.86 (s, 8H; β-pyrrole H), 7.80 (s, 2H; Ph-H), 7.78 (s, 6H; Ph-H), 7.61 (s, 4H; Ph-H), 7.33 (s, 2H; Ph-H), 7.31 (s, 2H; Ph-H), 4.30 (s, 8H; OCH2), 2.88 (s, 8H; NCH2), 2.55 (s, 16H; piperidine H), 1.61 (s, 16H; piperidine H), 1.43 (s, 8H; piperidineH), -2.81 ppm (s, 2H; pyrrole H); ESI:m/z: calcd for C72H81N8O4[M+H+]: 1123.47; found:1124.06[M+H+]. FT-MS: m/z: calcd for C72H81N8O4: 1123.65318; found: 1123.6530[M]. Figure S2. 1H-NMR of 5,10,15,20-tetra- {3-[2-(1-piperidinyl)ethoxy]phenyl} porphyrin (TPipEOPP). The NMR spectra were recorded on Mercury Vx-300 spectrometer operating for 1H NMR. Chemical shifts in the 1H NMR spectra are reported in ppm relative to the residual hydrogen atoms in the deuterated solvents: d = 2.50 and 7.25 ppm for [D6]DMSO and CDCl3, respectively. 1.3 Synthesis and characterization of 5,10,15,20-tetra-{3-[2-(1-methyl-1- piperidinyl) ethoxy] phenyl} porphyrin tetraiodide (m-TMPipEOPP-4I). To a suspension of TPipEOPP (0.0584g, 0.052 mmol) in dry CH2Cl2 (35 mL) was added CH3I (15 mL, 0.24 mmol). The mixture was stirred under N2 and heated by using an oil bath at 40 oC for 24 h. The solvent was evaporated and the resulting solid was washed with CH2Cl2 and diethyl ether in turn. m-TMPipEOPP-4I was obtained as a red-purple solid in 60.7% yield (0.0355 g, 0.030 mmol). 1H NMR (300 MHz, [D6]DMSO, 25 ºC, TMS) (Figure S1): δ = 8.90 (s, 8H; β-pyrrole H), 7.84 (s, 8H; Ph-H), 7.78 (s, 4H; Ph-H), 7.52 (s, 4H; Ph-H), 4.69 (s, 8H; OCH2), 3.92 (s, 8H; NCH2), 3.41–3.33 (m, 16H; piperidine H), 3.19 (s, 12H; NCH3), 2.49 (s, 8H; piperidine H), 1.84 (s, 16H; piperidine H), -2.95 ppm (s, 2H; pyrrole H); ESI:m/z: calcd for [C76H93N8O4-4I]/4: 295.7; found: 296.2 [M+-4I]/4. FT-MS: m/z: calcd for [C76H 93N8 O4-4I]/4: 295.68440; found: 295.6847[M]. Figure S3. 1H-NMR of 5,10,15,20-tetra- {3-[2-(1-methyl-1-piperidinyl)ethoxy]phenyl} porphyrin (m-TMPipEOPP). The NMR spectra were recorded on Mercury Vx-300 spectrometer operating for 1H NMR. Chemical shifts in the 1H NMR spectra are reported in ppm relative to the residual hydrogen atoms in the deuterated solvents: d = 2.50 and 7.25 ppm for [D6]DMSO and CDCl3, respectively. 2. Effects of different DNAs on the UV-vis absorption spectrum of m-TMPipEOPP 2.5 m-TMPipEOPP (1) Hum 57 2.0 Absorbance (2) Hum 63 (3) Hum 69 1.5 GC LD 1.0 (1) (2) (3) 0.5 ssDNA2 0.0 400 500 600 700 800 Wavelength (nm) Figure S4. UV-vis absorption spectra of m-TMPipEOPP in absence or presence of different DNAs. Free porphyrin (black line); G-quadruplex (red line); duplex DNA (blue line); single-stranded DNA (green line). [porphyrin] = 2.5 μM; [multimeric quadruplex] = 10 μM; [duplex DNA] = [single-stranded DNA] = 20 μM. 3. DNA concentration-dependent changes in the absorption spectrum of m-TMPipEOPP 3.1 Duplex DNAs AT Absorbance 2.0 0 M 10 M 20 M 30 M 40 M 50 M 1.5 1.0 0.5 0.0 400 500 600 700 800 Wavelength(nm) GC Absorbance 2.0 0 M 10 M 20 M 30 M 40 M 50 M 1.5 1.0 0.5 0.0 400 500 600 700 800 Wavelength(nm) LD Absorbance 2.0 0 M 10 M 20 M 30 M 40 M 50 M 1.5 1.0 0.5 0.0 400 500 600 700 800 Wavelength(nm) Figure S5. DNA concentration-dependent absorption spectrum changes of m-TMPipEOPP in the presence of individual duplex DNAs. The concentrations of the DNAs are labelled in the figures. 3.2 Single-stranded DNA ssDNA2 Absorbance 2.0 0 M 10 M 20 M 30 M 40 M 50 M 1.5 1.0 0.5 0.0 400 500 600 700 800 Wavelength(nm) Figure S6. DNA concentration-dependent absorption spectrum changes of m-TMPipEOPP in the presence of single-stranded ssDNA2. The concentrations of ssDNA2 are labelled in the figure. 3.3 Multimeric G-quadruplexes Hum51 2.0 2.0 1.5 1.0 Absorbance 1.5 0.5 0.0 350 1.0 400 450 500 700 750 0.10 0.05 0.5 0.00 600 650 0.0 400 500 600 700 800 Wavelength (nm) Hum57 2.0 2.0 1.5 1.0 1.5 0.5 Absorbance 0.0 350 1.0 400 450 500 650 700 750 0.10 0.05 0.00 0.5 600 0.0 400 500 600 700 800 Wavelength (nm) Hum63 2.0 2 .0 1 .5 1 .0 Absorbance 1.5 0 .5 0 .0 350 1.0 400 450 500 650 700 750 0.10 0.05 0.5 0.00 600 0.0 400 500 600 700 800 Wavelength (nm) Hum69 2.0 2.0 1.5 1.0 Absorbance 1.5 0.5 0.0 350 1.0 400 450 500 650 700 750 0.10 0.05 0.00 0.5 600 0.0 400 500 600 700 800 Wavelength (nm) Figure S7. DNA concentration-dependent absorption spectrum changes of m-TMPipEOPP in the presence of individual multimeric G-quadurplexes. The concentrations of the G-quadruplexes are (arrow direction): 0, 2.5, 5, 10, 15 and 20 μM. 3.4 Monomeric G-quadruplexes 2.5 M3Q 2.5 2.0 Absorbance Oxy28 Oxy28 2.0 1.5 1.5 1.0 1.0 M 00 M 10 M 10 M 20 M 20 M 30 M 30 40M M 40 M 50 M 50 M 0.5 0.0 0.5 400 500 600 700 800 0.0 400 500 600 700 800 Wavelength(nm) 2.5 C-MYC 2.5 Absorbance 2.0 0 M M 10 M 10 M 20 M M 20 30 M M 30 40 M 40 M 50 M 50 M KRAS KRAS 2.0 1.5 1.5 1.0 1.0 0.5 0.0 0.5 400 500 600 700 800 0.0 400 500 600 700 800 Wavelength(nm) Figure S8. DNA concentration-dependent absorption spectrum changes of m-TMPipEOPP in the presence of individual monomeric G-quadurplexes (M3Q, Oxy28, C-MYC and KRAS). The concentrations of the G-quadruplexes are labelled in the figures. 3.5 Mutants of multimeirc G-quadruplexes Hum51-M1 2.0 Hum51-M2 2.0 2 .0 2.0 1.5 1 .5 1 .0 1.5 400 450 Absorbance Absorbance 0 .0 350 1.0 500 0 .1 0 0 .0 5 0.5 1.0 1.5 0 .5 0.5 0.0 350 1.0 450 500 650 700 750 0.05 0.5 0 .0 0 600 650 700 0.00 750 600 0.0 0.0 400 500 600 700 800 400 Wavelength (nm) 500 800 2 .0 1 .5 1 .5 1 .0 1 .0 1.5 0 .0 350 400 450 Absorbance 0 .5 1.0 700 Hum57-M2 2.0 2 .0 1.5 600 Wavelength (nm) Hum57-M1 2.0 Absorbance 400 0.10 500 0 .1 0 0 .0 5 0.5 0 .5 0 .0 350 1.0 650 700 500 650 700 750 0 .0 0 600 750 0.0 450 0 .0 5 0.5 0 .0 0 600 400 0 .1 0 0.0 400 500 600 700 800 400 Wavelength (nm) 600 700 800 Wavelength (nm) Hum57-M3 2.0 500 Hum63-M1 2.0 2 .0 2 .0 1 .5 1 .5 0 .5 0 .0 350 400 450 Absorbance Absorbance 1.5 1 .0 1.5 1 .0 500 1.0 0 .1 0 0 .0 5 0 .5 0 .0 350 450 500 0.5 0.5 0 .0 0 600 650 700 750 0.0 0.0 400 500 600 700 400 800 Hum63-M2 2.0 500 600 2 .0 1 .5 1 .5 1 .0 400 450 500 0 .0 5 Absorbance 1.0 1 .0 1.5 0 .5 0 .0 350 0 .1 0 0 .5 0 .0 350 400 450 500 650 700 750 0 .1 0 1.0 0 .0 5 0.5 0.5 0 .0 0 0 .0 0 600 800 Hum63-M3 2.0 2 .0 1.5 700 Wavelength (nm) Wavelength (nm) Absorbance 400 1.0 600 650 700 750 0.0 0.0 400 500 600 700 800 Wavelength (nm) 400 500 600 700 800 Wavelength (nm) Figure S9. DNA concentration-dependent absorption spectrum changes of m-TMPipEOPP in the presence of the mutants of multimeric G-quadurplexes. The concentrations of the G-quadruplexes are (arrow direction): 0, 2.5, 5, 10, 15 and 20 μM. 4. DNA concentration-dependent fluorescence spectral changes of the two porphyrin isomers in the presence of multimeric G-quadruplexes or their mutants 600 m-TMPipEOPP + Hum51 p-TMPipEOPP + Hum51 250 Fluorescence Fluorescence 200 25 M 400 0 M 200 25 M 150 0 M 100 50 0 600 650 700 750 0 600 800 650 Wavelength(nm) m-TMPipEOPP + Hum57 25 M 300 0 M 150 0 600 750 800 850 p-TMPipEOPP + Hum57 200 450 Fluorescence 250 Fluorescence 600 700 Wavelength(nm) 25 M 150 0 M 100 50 650 700 750 0 600 800 650 700 750 800 850 Wavelength(nm) Wavelength(nm) m-TMPipEOPP + Hum63 200 p-TMPipEOPP + Hum63 450 25 M 300 0 M Fluorescence Fluorescence 600 0 M 100 50 150 0 600 25 M 150 650 700 750 0 600 800 650 700 750 800 850 Wavelength(nm) Wavelength(nm) m-TMPipEOPP + Hum69 200 p-TMPipEOPP + Hum69 600 0 M 300 150 0 600 650 700 Wavelength(nm) 750 25 M 150 Fluorescence Fluorescence 25 M 450 800 0 M 100 50 0 600 650 700 750 Wavelength(nm) 800 850 p-TMPipEOPP + Hum51-M1 m-TMPipEOPP + Hum51-M1 200 600 25 M 400 Fluorescence Fluorescence 25 M 0 M 200 0 600 150 0 M 100 50 650 700 750 0 600 800 650 700 750 800 850 Wavelength(nm) Wavelength(nm) m-TMPipEOPP + Hum51-M2 250 p-TMPipEOPP + Hum51-M2 450 200 Fluorescence Fluorescence 25 M 300 0 M 150 25 M 150 0 M 100 50 0 600 650 700 750 0 600 800 650 m-TMPipEOPP + Hum57-M1 250 0 M 300 150 0 600 650 700 750 25 M 150 0 M 100 0 600 800 650 700 750 800 850 Wavelength(nm) m-TMPipEOPP + Hum57-M2 25 M 300 0 M 250 p-TMPipEOPP + Hum57-M2 25 M 200 Fluorescence Fluorescence 850 50 450 150 0 600 800 p-TMPipEOPP + Hum57-M1 Wavelength(nm) 600 750 200 25 M 450 Fluorescence Fluorescence 600 700 Wavelength(nm) wavelength(nm) Wavelength(nm) 150 0 M 100 50 650 700 750 Wavelength(nm) 800 0 600 650 700 750 Wavelength(nm) 800 850 m-TMPipEOPP + Hum57-M3 300 250 450 25 M 25 M 300 Fluorescence Fluorescence p-TMPipEOPP + Hum57-M3 0 M 150 200 0 M 150 100 50 0 600 600 650 700 750 0 600 800 700 750 800 Wavelength(nm) m-TMPipEOPP + Hum63-M1 p-TMPipEOPP + Hum63-M1 850 200 Fluorescence 25 M Fluorescence 650 Wavelength(nm) 400 0 M 200 25 M 150 0 M 100 50 0 600 650 700 750 0 600 800 650 600 700 750 m-TMPipEOPP + Hum63-M2 250 300 0 M Fluorescence Fluorescence 25 M 150 650 700 750 800 150 0 M 100 450 25 M 300 0 M 150 650 700 Wavelength(nm) 0 600 650 700 750 Wavelength(nm) m-TMPipEOPP + Hum63-M3 Fluorescence 25 M 50 Wavelength(nm) 0 600 850 p-TMPipEOPP + Hum63-M2 200 450 0 600 800 Wavelength(nm) Wavelength(nm) 750 800 800 850 p-TMPipEOPP + Hum63-M3 Fluorescence 250 200 25 M 150 0 M 100 50 0 600 650 700 750 800 850 Wavelength(nm) Figure S10. DNA concentration-dependent fluorescence spectrum changes of m-TMPipEOPP (Left) and p-TMPipEOPP (Right) in the presence of multimeric G-quadurplexes and their mutants. When m-TMPipEOPP was used, the concentrations of the G-quadruplexes are (arrow direction): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20 and 25 μM. When p-TMPipEOPP was used, the concentrations of the G-quadruplexes are (arrow direction): 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 9, 10, 15, 20 and 25 μM. 200 160 F674nm-F709nm 120 Hum45 80 40 0 Slope(Hum45)/Slope(Hum21)=891 -40 -80 Hum21 -120 0 10 20 30 40 50 G-rich sequence concentration (M) Figure S11. Comparison of fluorescence signal changes (F674nm-F709nm) in the presence of multimeric G-quadruplex Hum45 and monomeric G-quadruplex Hum21. 5. Job Plot analysis for the interactions between p-TMPipEOPP and G-quadruplexes 5.1 Monomeric G-quadruplex Hum21 Hum21 (a) (b) Hum21 0.4 1.6 0.3 A454 A421 1.2 0.8 0.4 0.2 0.1 0.32 0.33 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 (c) Hum21 0.2 0.4 0.6 0.8 1.0 [o-TMPipEOPP]/([o-TMPipEOPP]+[Hum21]) [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum21]) (d) Hum21 400 0.3 Fluorescence A695 300 0.2 0.1 200 100 0.34 0.33 0.0 0 0.0 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum21]) 0.0 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum21]) Figure S12. Job plot analysis of the interaction between p-TMPipEOPP and Hum21 utilizing the absorption signals at (a) 421 nm, (b) 454 nm, (c) 695 nm and (d) the fluorescence signals at 719 nm (λex = 700 nm), respectively. (a) [p-TMPipEOPP] + [Hum21] = 2 μM, (b) and (d) [p-TMPipEOPP] + [Hum21] = 5 μM, (c) [p-TMPipEOPP] + [Hum21] = 30 μM. 5.2 Multimeric G-quadruplex Hum45 (a) Hum45 (b) 1.6 Hum45 0.9 1.2 A454 A421 0.6 0.8 0.3 0.4 0.39 0.37 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 ([p-TMPipEOPP]/(p-TMPipEOPP]+[Hum45])) (c) Hum45 (d) 0.4 Fluorescence A695 0.3 0.2 0.1 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/(p-TMPipEOPP]+[Hum45]) Hum45 800 600 400 200 0.38 0.38 0.0 0 0.0 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/(p-TMPipEOPP]+[Hum45]) 0.0 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/(p-TMPipEOPP]+[Hum45]) Figure S13. Job plot analysis of the interaction between p-TMPipEOPP and Hum45 utilizing the absorption signals at (a) 421 nm, (b) 454 nm, (c) 695 nm and (d) the fluorescence signals at 719 nm (λex = 700 nm), respectively. (a) [p-TMPipEOPP] + [Hum45] = 2 μM, (b) and (d) [p-TMPipEOPP] + [Hum45] = 5 μM, (c) [p-TMPipEOPP] + [Hum45] = 30 μM. 5.3 Multimeric G-quadruplex Hum51 (a) Hum51 1.6 A421 1.2 0.8 0.4 0.42 0.0 0.0 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum51]) Hum51 (b) 0.6 A454 0.4 0.2 0.43 0.0 0.0 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum51]) (c) Hum51 0.4 A695 0.3 0.2 0.1 0.41 0.0 0.0 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum51]) (d) Hum51 Fluorescence 800 600 400 200 0.41 0 0.0 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum51]) Figure S14. Job plot analysis of the interaction between p-TMPipEOPP and Hum51 utilizing the absorption signals at (a) 421 nm, (b) 454 nm, (c) 695 nm and (d) the fluorescence signals at 719 nm (λex = 700 nm), respectively. (a) [p-TMPipEOPP] + [Hum51] = 2 μM, (b) and (d) [p-TMPipEOPP] + [Hum51] = 5 μM, (c) [p-TMPipEOPP] + [Hum51] = 30 μM. 5.4 Multimeric G-quadruplex Hum57 (a) Hum57 1.6 (b) Hum57 0.6 0.4 A454 A421 1.2 0.8 0.2 0.4 0.45 0.46 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum57]) (c) 0.0 0.2 0.4 0.6 0.8 1.0 [o-TMPipEOPP]/([o-TMPipEOPP]+[Hum57]) Hum57 0.4 A695 0.3 0.2 0.1 0.46 0.0 0.0 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum57]) (d) Hum57 Fluorescence 800 600 400 200 0.45 0 0.0 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum57]) Figure S15. Job plot analysis of the interaction between p-TMPipEOPP and Hum57 utilizing the absorption signals at (a) 421 nm, (b) 454 nm, (c) 695 nm and (d) the fluorescence signals at 719 nm (λex = 700 nm), respectively. (a) [p-TMPipEOPP] + [Hum57] = 2 μM, (b) and (d) [p-TMPipEOPP] + [Hum57] = 5 μM, (c) [p-TMPipEOPP] + [Hum57] = 30 μM. 5.5 Multimeric G-quadruplex Hum63 (a) Hum63 1.6 A421 1.2 0.8 0.4 0.50 0.0 0.0 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum63]) (c) Hum63 Hum63 0.8 0.4 0.6 0.3 A695 A454 (b) 0.4 0.2 0.2 0.1 0.52 0.51 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum63]) 0.0 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum63]) Hum63 (d) Fluorescence 1200 900 600 0.50 300 0 0.0 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum63]) Figure S16. Job plot analysis of the interaction between p-TMPipEOPP and Hum63 utilizing the absorption signals at (a) 421 nm, (b) 454 nm, (c) 695 nm and (d) the fluorescence signals at 719 nm (λex = 700 nm), respectively. (a) [p-TMPipEOPP] + [Hum63] = 2 μM, (b) and (d) [p-TMPipEOPP] + [Hum63] = 5 μM, (c) [p-TMPipEOPP] + [Hum63] = 30 μM. 5.6 Multimeric G-quadruplex Hum69 Hum69 (a) A421 1.2 0.8 0.4 0.49 0.0 0.0 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum69]) (b) Hum69 0.8 A454 0.6 0.4 0.2 0.49 0.0 0.0 0.2 0.4 0.6 0.8 1.0 [o-TMPipEOPP]/([o-TMPipEOPP]+[Hum72]) (c) Hum69 (d) 0.5 Hum69 900 Fluorescence A695 0.4 0.3 0.2 600 300 0.1 0.50 0.48 0.0 0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum69]) [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum69]) Figure S17. Job plot analysis of the interaction between p-TMPipEOPP and Hum69 utilizing the absorption signals at (a) 421 nm, (b) 454 nm, (c) 695 nm and (d) the fluorescence signals at 719 nm (λex = 700 nm), respectively. (a) [p-TMPipEOPP] + [Hum69] = 2 μM, (b) and (d) [p-TMPipEOPP] + [Hum69] = 5 μM, (c) [p-TMPipEOPP] + [Hum69] = 30 μM. 5.7 Multimeric G-quadruplex Hum51-M1 (a) Hum51-M1 (b) 1.6 0.3 A454 1.2 A421 Hum51-M1 0.4 0.8 0.4 0.2 0.1 0.38 0.0 0.0 0.2 0.4 0.6 0.37 0.0 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum51-M1]) 0.0 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum51-M1]) (c) Hum51-M1 0.4 A695 0.3 0.2 0.1 0.38 0.0 0.0 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum51-M1]) Fluorescence (d) Hum51-M1 600 400 200 0.38 0 0.0 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum51-M1]) Figure S18. Job plot analysis of the interaction between p-TMPipEOPP and Hum51-M1 utilizing the absorption signals at (a) 421 nm, (b) 454 nm, (c) 695 nm and (d) the fluorescence signals at 719 nm (λex = 700 nm), respectively. (a) [p-TMPipEOPP] + [Hum51-M1] = 2 μM, (b) and (d) [p-TMPipEOPP] + [Hum51-M1] = 5 μM, (c) [p-TMPipEOPP] + [Hum51-M1] = 30 μM. 5.8 Multimeric G-quadruplex Hum57-M1 (a) Hum57-M1 Hum57-M1 (b) 1.6 0.6 0.4 A454 A421 1.2 0.8 0.2 0.4 0.40 0.38 0.0 0.0 0.2 0.4 0.6 0.0 0.8 1.0 0.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum57-M1]) (c) Hum57-M1 0.4 0.6 0.8 1.0 Hum57-M1 (d) 0.4 Fluorescence 900 0.3 A695 0.2 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum57-M1]) 0.2 0.1 600 300 0.37 0.39 0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum57-M1]) 0.0 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum57-M1]) Figure S19. Job plot analysis of the interaction between p-TMPipEOPP and Hum57-M1 utilizing the absorption signals at (a) 421 nm, (b) 454 nm, (c) 695 nm and (d) the fluorescence signals at 719 nm (λex = 700 nm), respectively. (a) [p-TMPipEOPP] + [Hum57-M1] = 2 μM, (b) and (d) [p-TMPipEOPP] + [Hum57-M1] = 5 μM, (c) [p-TMPipEOPP] + [Hum57-M1] = 30 μM. 5.9 Multimeric G-quadruplex Hum63-M1 (a) Hum63-M1 0.6 A454 A421 1.2 0.8 0.4 0.2 0.4 0.39 0.38 0.0 0.0 0.2 0.4 0.6 0.0 0.8 0.0 1.0 (c) 0.2 (d) Hum63-M1 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum63-M1]) [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum63-M1]) Hum63-M1 1200 0.4 Fluorescence 0.3 A695 Hum63-M1 (b) 1.6 0.2 0.1 900 600 300 0.39 0.4 0.0 0 0.0 0.2 0.4 0.6 0.8 0.0 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum63-M1]) 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum63-M1]) Figure S20. Job plot analysis of the interaction between p-TMPipEOPP and Hum63-M1 utilizing the absorption signals at (a) 421 nm, (b) 454 nm, (c) 695 nm and (d) the fluorescence signals at 719 nm (λex = 700 nm), respectively. (a) [p-TMPipEOPP] + [Hum63-M1] = 2 μM, (b) and (d) [p-TMPipEOPP] + [Hum63-M1] = 5 μM, (c) [p-TMPipEOPP] + [Hum63-M1] = 30 μM. 5.10 Multimeric G-quadruplex Hum51-M2 (a) (b) Hum51-M2 1.6 Hum51-M2 0.6 1.2 A454 A421 0.4 0.8 0.2 0.4 0.46 0.45 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum51-M2]) (c) 0.0 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum51-M2]) Hum51-M2 0.4 A695 0.3 0.2 0.1 0.46 0.0 0.0 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum51-M2]) Fluorescence (d) Hum51-M2 600 400 200 0.45 0 0.0 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum51-M2]) Figure S21. Job plot analysis of the interaction between p-TMPipEOPP and Hum51-M2 utilizing the absorption signals at (a) 421 nm, (b) 454 nm, (c) 695 nm and (d) the fluorescence signals at 719 nm (λex = 700 nm), respectively. (a) [p-TMPipEOPP] + [Hum51-M2] = 2 μM, (b) and (d) [p-TMPipEOPP] + [Hum51-M2] = 5 μM, (c) [p-TMPipEOPP] + [Hum51-M2] = 30 μM. 5.11 (a) Multimeric G-quadruplex Hum57-M2 Hum57-M2 Hum57-M2 (b) 1.6 0.6 A454 A421 1.2 0.8 0.4 0.2 0.4 0.44 0.44 0.0 0.0 0.0 0.2 0.4 0.6 0.8 0.0 1.0 (c) (d) Hum57-M2 0.4 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum57-M2]) [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum57-M2]) Hum57-M2 900 Fluorescence A695 0.3 0.2 0.1 600 300 0.44 0.44 0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum57-M2]) 0.0 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum57-M2]) Figure S22. Job plot analysis of the interaction between p-TMPipEOPP and Hum57-M2 utilizing the absorption signals at (a) 421 nm, (b) 454 nm, (c) 695 nm and (d) the fluorescence signals at 719 nm (λex = 700 nm), respectively. (a) [p-TMPipEOPP] + [Hum57-M2] = 2 μM, (b) and (d) [p-TMPipEOPP] + [Hum57-M2] = 5 μM, (c) [p-TMPipEOPP] + [Hum57-M2] = 30 μM. 5.12 (a) Multimeric G-quadruplex Hum63-M2 Hum63-M2 0.6 A454 1.2 A421 Hum63-M2 (b) 1.6 0.8 0.4 0.2 0.4 0.46 0.47 0.0 0.0 0.0 0.2 0.4 0.6 0.8 0.0 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum63-M2]) Hum63-M2 (c) (d) 0.4 0.4 0.6 0.8 1.0 Hum63-M2 1200 Fluorescence 900 0.3 A695 0.2 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum63-M2]) 0.2 0.1 600 300 0.47 0.46 0.0 0 0.0 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum63-M2]) 0.0 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum63-M2]) Figure S23. Job plot analysis of the interaction between p-TMPipEOPP and Hum63-M2 utilizing the absorption signals at (a) 421 nm, (b) 454 nm, (c) 695 nm and (d) the fluorescence signals at 719 nm (λex = 700 nm), respectively. (a) [p-TMPipEOPP] + [Hum63-M2] = 2 μM, (b) and (d) [p-TMPipEOPP] + [Hum63-M2] = 5 μM, (c) [p-TMPipEOPP] + [Hum63-M2] = 30 μM. 5.13 Multimeric G-quadruplex Hum57-M3 Hum57-M3 (a) (b) Hum57-M3 0.8 1.2 A421 0.6 A454 0.8 0.4 0.4 0.2 0.5 0.0 0.0 0.2 0.4 0.6 0.5 0.0 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum57-M3]) 0.0 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum57-M3]) Hum57-M3 (c) 0.4 A695 0.3 0.2 0.1 0.51 0.0 0.0 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum57-M3]) (d) Hum57-M3 Fluorescence 1200 800 400 0.5 0 0.0 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum57-M3]) Figure S24. Job plot analysis of the interaction between p-TMPipEOPP and Hum57-M3 utilizing the absorption signals at (a) 421 nm, (b) 454 nm, (c) 695 nm and (d) the fluorescence signals at 719 nm (λex = 700 nm), respectively. (a) [p-TMPipEOPP] + [Hum57-M3] = 2 μM, (b) and (d) [p-TMPipEOPP] + [Hum57-M3] = 5 μM, (c) [p-TMPipEOPP] + [Hum57-M3] = 30 μM. 5.14 (a) Multimeric G-quadruplex Hum63-M3 Hum63-M3 (b) 1.6 0.8 0.6 A454 A421 1.2 Hum63-M3 0.8 0.4 0.4 0.2 0.50 0.51 0.0 0.0 0.2 0.4 0.6 0.8 0.0 0.0 1.0 (c) Hum63-M3 0.5 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum63-M3]) [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum63-M3]) (d) Hum63-M3 1200 Fluorescence 0.4 A695 0.3 0.2 900 600 300 0.1 0.51 0.5 0.0 0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum63-M3]) [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum63-M3]) [p-TMPipEOPP]/([p-TMPipEOPP]+[Hum57-M3]) Figure S25. Job plot analysis of the interaction between p-TMPipEOPP and Hum63-M3 utilizing the absorption signals at (a) 421 nm, (b) 454 nm, (c) 695 nm and (d) the fluorescence signals at 719 nm (λex = 700 nm), respectively. (a) [p-TMPipEOPP] + [Hum63-M3] = 2 μM, (b) and (d) [p-TMPipEOPP] + [Hum63-M3] = 5 μM, (c) [p-TMPipEOPP] + [Hum63-M3] = 30 μM. 6. Job Plot analysis for the interactions between m-TMPipEOPP and G-quadruplexes 6.1 Monomeric G-quadruplex Hum21 Hum21 0.16 0.14 0.12 A452 0.10 0.08 0.06 0.04 0.02 0.00 -0.02 0.0 0.2 0.4 0.6 0.8 1.0 [m-TMPipEOPP]/([m-TMPipEOPP]+[Hum21]) Hum21 0.08 A666 0.06 0.04 0.02 0.00 0.0 0.2 0.4 0.6 0.8 1.0 [m-TMPipEOPP]/([m-TMPipEOPP]+[Hum21]) Figure S26. Job plot analysis of the interaction between m-TMPipEOPP and Hum21 utilizing the absorption signals at 452 nm and 666 nm, respectively. [m-TMPipEOPP] + [Hum21] = 10 μM. 6.2 Multimeric G-quadruplex Hum45 Hum 45 0.25 A452 0.20 0.15 0.10 0.05 0.31 0.00 0.0 0.2 0.4 0.6 0.8 1.0 [m-TMPipEOPP]/([m-TMPipEOPP]+[Hum45]) Hum45 0.06 0.05 A666 0.04 0.03 0.02 0.01 0.31 0.00 -0.01 0.0 0.2 0.4 0.6 0.8 1.0 [m-TMPipEOPP]/([m-TMPipEOPP]+[Hum45]) Figure S27. Job plot analysis of the interaction between m-TMPipEOPP and Hum45 utilizing the absorption signals at 452 nm and 666 nm, respectively. [m-TMPipEOPP] + [Hum45] = 10 μM. 6.3 Multimeric G-quadruplex Hum51 Hum 51 0.4 A452 0.3 0.2 0.1 0.33 0.0 0.0 0.2 0.4 0.6 0.8 1.0 [m-TMPipEOPP]/([m-TMPipEOPP]+[Hum51]) Hum51 0.06 A666 0.04 0.02 0.33 0.00 0.0 0.2 0.4 0.6 0.8 1.0 [m-TMPipEOPP]/([m-TMPipEOPP]+[Hum51]) Figure S28. Job plot analysis of the interaction between m-TMPipEOPP and Hum51 utilizing the absorption signals at 452 nm and 666 nm, respectively. [m-TMPipEOPP] + [Hum51] = 10 μM. 6.4 Multimeric G-quadruplex Hum57 Hum 57 A452 0.6 0.4 0.2 0.33 0.0 0.0 0.2 0.4 0.6 0.8 1.0 [m-TMPipEOPP]/([m-TMPipEOPP]+[Hum57]) Hum57 0.12 0.10 A666 0.08 0.06 0.04 0.02 0.33 0.00 0.0 0.2 0.4 0.6 0.8 1.0 [m-TMPipEOPP]/([m-TMPipEOPP]+[Hum57]) Figure S29. Job plot analysis of the interaction between m-TMPipEOPP and Hum57 utilizing the absorption signals at 452 nm and 666 nm, respectively. [m-TMPipEOPP] + [Hum57] = 10 μM. 6.5 Multimeric G-quadruplex Hum63 Hum 63 0.5 A452 0.4 0.3 0.2 0.1 0.33 0.0 0.0 0.2 0.4 0.6 0.8 1.0 [m-TMPipEOPP]/([m-TMPipEOPP]+[Hum63]) Hum63 0.06 0.05 A666 0.04 0.03 0.02 0.01 0.33 0.00 -0.01 0.0 0.2 0.4 0.6 0.8 1.0 [m-TMPipEOPP]/([m-TMPipEOPP]+[Hum63]) Figure S30. Job plot analysis of the interaction between m-TMPipEOPP and Hum63 utilizing the absorption signals at 452 nm and 666 nm, respectively. [m-TMPipEOPP] + [Hum63] = 10 μM. 6.6 Multimeric G-quadruplex Hum69 Hum69 0.3 A452 0.2 0.1 0.33 0.0 0.0 0.2 0.4 0.6 0.8 1.0 [m-TMPipEOPP]/([m-TMPipEOPP]+[Hum69]) Hum69 0.08 A666 0.06 0.04 0.02 0.33 0.00 0.0 0.2 0.4 0.6 0.8 1.0 [m-TMPipEOPP]/([m-TMPipEOPP]+[Hum69]) Figure S31. Job plot analysis of the interaction between m-TMPipEOPP and Hum69 utilizing the absorption signals at 452 nm and 666 nm, respectively. [m-TMPipEOPP] + [Hum69] = 10 μM. 6.7 Multimeric G-quadruplex Hum51-M1 Hum51-M1 0.40 0.35 0.30 A452 0.25 0.20 0.15 0.10 0.05 0.29 0.00 0.0 0.2 0.4 0.6 0.8 1.0 [m-TMPipEOPP]/([m-TMPipEOPP]+[Hum51-M1]) Hum51-M1 0.06 0.05 A666 0.04 0.03 0.02 0.01 0.31 0.00 0.0 0.2 0.4 0.6 0.8 1.0 [m-TMPipEOPP]/([m-TMPipEOPP]+[Hum51-M1]) Figure S32. Job plot analysis of the interaction between m-TMPipEOPP and Hum51-M1 utilizing the absorption signals at 452 nm and 666 nm, respectively. [m-TMPipEOPP] + [Hum51-M1] = 10 μM. 6.8 Multimeric G-quadruplex Hum57-M1 Hum57-M1 0.45 0.40 0.35 A452 0.30 0.25 0.20 0.15 0.10 0.31 0.05 0.00 0.0 0.2 0.4 0.6 0.8 1.0 [m-TMPipEOPP]/([m-TMPipEOPP]+[Hum57-M1]) Hum57-M1 0.10 A666 0.08 0.06 0.04 0.31 0.02 0.00 0.0 0.2 0.4 0.6 0.8 1.0 [m-TMPipEOPP]/([m-TMPipEOPP]+[Hum57-M1]) Figure S33. Job plot analysis of the interaction between m-TMPipEOPP and Hum57-M1 utilizing the absorption signals at 452 nm and 666 nm, respectively. [m-TMPipEOPP] + [Hum57-M1] = 10 μM. 6.9 Multimeric G-quadruplex Hum63-M1 Hum63-M1 0.40 0.35 0.30 A452 0.25 0.20 0.15 0.10 0.31 0.05 0.00 0.0 0.2 0.4 0.6 0.8 1.0 [m-TMPipEOPP]/([m-TMPipEOPP]+[Hum63-M1]) Hum63-M1 0.08 0.07 0.06 A666 0.05 0.04 0.03 0.02 0.01 0.31 0.00 0.0 0.2 0.4 0.6 0.8 1.0 [m-TMPipEOPP]/([m-TMPipEOPP]+[Hum63-M1]) Figure S34. Job plot analysis of the interaction between m-TMPipEOPP and Hum63-M1 utilizing the absorption signals at 452 nm and 666 nm, respectively. [m-TMPipEOPP] + [Hum63-M1] = 10 μM. Multimeric G-quadruplex Hum51-M2 Hum51-M2 0.4 0.3 A452 6.10 0.2 0.1 0.33 0.0 0.0 0.2 0.4 0.6 0.8 1.0 [m-TMPipEOPP]/([m-TMPipEOPP]+[Hum51-M2]) Hum51-M2 0.08 A666 0.06 0.04 0.02 0.33 0.00 0.0 0.2 0.4 0.6 0.8 1.0 [m-TMPipEOPP]/([m-TMPipEOPP]+[Hum51-M2]) Figure S35. Job plot analysis of the interaction between m-TMPipEOPP and Hum51-M2 utilizing the absorption signals at 452 nm and 666 nm, respectively. [m-TMPipEOPP] + [Hum51-M2] = 10 μM. Multimeric G-quadruplex Hum57-M2 Hum57-M2 0.5 0.4 0.3 A452 6.11 0.2 0.1 0.0 0.33 -0.1 0.0 0.2 0.4 0.6 0.8 1.0 [m-TMPipEOPP]/([m-TMPipEOPP]+[Hum57-M2]) Hum57-M2 0.12 0.10 A666 0.08 0.06 0.04 0.02 0.00 0.0 0.2 0.4 0.6 0.8 1.0 [m-TMPipEOPP]/([m-TMPipEOPP]+[Hum57-M2]) Figure S36. Job plot analysis of the interaction between m-TMPipEOPP and Hum57-M2 utilizing the absorption signals at 452 nm and 666 nm, respectively. [m-TMPipEOPP] + [Hum57-M2] = 10 μM. Multimeric G-quadruplex Hum63-M2 Hum63-M2 0.3 A452 6.12 0.2 0.1 0.33 0.0 0.0 0.2 0.4 0.6 0.8 1.0 [m-TMPipEOPP]/([m-TMPipEOPP]+[Hum63-M2]) Hum63-M2 0.10 0.08 A666 0.06 0.04 0.02 0.33 0.00 0.0 0.2 0.4 0.6 0.8 1.0 [m-TMPipEOPP]/([m-TMPipEOPP]+[Hum63-M2]) Figure S37. Job plot analysis of the interaction between m-TMPipEOPP and Hum63-M2 utilizing the absorption signals at 452 nm and 666 nm, respectively. [m-TMPipEOPP] + [Hum63-M2] = 10 μM. Multimeric G-quadruplex Hum57-M3 Hum57-M3 0.5 0.4 0.3 A452 6.13 0.2 0.1 0.33 0.0 0.0 0.2 0.4 0.6 0.8 1.0 [m-TMPipEOPP]/([m-TMPipEOPP]+[Hum57-M3]) Hum57-M3 0.12 0.10 A666 0.08 0.06 0.04 0.33 0.02 0.00 0.0 0.2 0.4 0.6 0.8 1.0 [m-TMPipEOPP]/([m-TMPipEOPP]+[Hum57-M3]) Figure S38. Job plot analysis of the interaction between m-TMPipEOPP and Hum57-M3 utilizing the absorption signals at 452 nm and 666 nm, respectively. [m-TMPipEOPP] + [Hum57-M3] = 10 μM. Multimeric G-quadruplex Hum63-M3 Hum63-M3 0.5 0.4 0.3 A452 6.14 0.2 0.1 0.33 0.0 0.0 0.2 0.4 0.6 0.8 1.0 [m-TMPipEOPP]/([m-TMPipEOPP]+[Hum63-M3]) Hum63-M3 0.06 0.05 A666 0.04 0.03 0.02 0.01 0.32 0.00 0.0 0.2 0.4 0.6 0.8 1.0 [m-TMPipEOPP]/([m-TMPipEOPP]+[Hum63-M3]) Figure S39. Job plot analysis of the interaction between m-TMPipEOPP and Hum63-M3 utilizing the absorption signals at 452 nm and 666 nm, respectively. [m-TMPipEOPP] + [Hum63-M3] = 10 μM. 7. Circular dichroism (CD) spectroscopy of monomeric and multimeric G-quadruplexes 7.1 Under dilute conditions 4 Hum 69 Hum 63 Hum 57 Hum 51 Hum 45 Hum 21 4 3 CD/mdeg CD/mdeg 6 2 Hum 45 Hum 51 Hum 51-M1 Hum 51-M2 2 1 0 0 -1 -2 220 240 260 280 Wavelength(nm) 300 320 220 240 260 280 Wavelength(nm) 300 320 6 6 CD/mdeg CD/mdeg 4 8 Hum 59 Hum 59-M1 Hum 59-M2 Hum 59-M3 2 0 220 4 Hum63 Hum63-M1 Hum63-M2 Hum63-M3 Hum69 2 0 240 260 280 300 -2 220 320 240 260 280 300 320 Wavelength(nm) Wavelength(nm) Figure S40. CD spectra of monomeric and multimeric G-quadruplexes under dilute conditions 7.2 Under molecular crowding conditions 20 Hum69 Hum63 Hum57 Hum51 Hum45 Hum21 10 8 CD/mdeg CD/mdeg 15 5 4 0 0 -5 -4 220 240 260 280 Wavelength (nm) 300 Hum45 Hum51 Hum51-M1 Hum51-M2 12 320 220 240 260 280 Wavelength(nm) 300 320 16 25 CD/mdeg 12 8 4 15 10 5 0 0 -5 -4 220 Hum63 Hum63-M1 Hum63-M2 Hum63-M3 Hum69 20 CD/mdeg Hum57 Hum57-M1 Hum57-M2 Hum57-M3 240 260 280 300 Hum 45 Hum 51 Hum 51-M1 Hum 51-M2 12 8 CD/mdeg Wavelength(nm) 4 0 -4 220 240 260 280 300 320 Wavelength(nm) 320 -10 220 240 260 280 300 320 Wavelength (nm) Figure S41. CD spectra of monomeric and multimeric G-quadruplexes under molecular crowding conditions 8. Scatchard analysis of the interactions between m-TMPipEOPP and multimeric G-quadruplexes Hum45 Hum51 0.32 0.20 0.30 0.19 0.28 0.26 0.18 r/Cf r/Cf 0.21 0.24 0.17 0.22 0.16 0.20 0.15 0.18 0.28 0.29 0.30 0.31 0.32 0.16 0.33 0.32 0.34 0.36 0.40 Hum63 Hum57 0.23 0.38 r r 0.60 0.22 0.55 0.21 r/Cf r/Cf 0.20 0.19 0.50 0.45 0.18 0.17 0.40 0.16 0.35 0.15 0.28 0.30 0.32 0.30 0.34 0.32 0.34 0.38 0.40 Hum51-M1 Hum69 0.44 0.36 r r 0.40 0.18 0.36 0.17 r/Cf r/Cf 0.19 0.16 0.32 0.15 0.28 0.14 0.24 0.32 0.34 0.21 0.36 0.38 0.28 0.40 0.30 0.31 r r Hum51-M2 Hum57-M1 0.32 0.33 0.28 0.20 0.19 0.26 0.18 r/Cf r/Cf 0.29 0.17 0.16 0.24 0.22 0.15 0.20 0.14 0.13 0.18 0.28 0.29 0.30 0.31 r 0.32 0.33 0.34 0.27 0.28 0.29 0.30 r 0.31 0.32 0.33 Hum57-M2 0.30 0.28 0.23 0.26 0.22 r/Cf 0.24 r/Cf Hum57-M3 0.24 0.22 0.20 0.21 0.20 0.19 0.18 0.16 0.18 0.14 0.17 0.40 0.41 0.42 0.43 0.28 0.44 0.29 0.30 0.31 r Hum63-M1 0.42 0.33 0.34 0.33 0.34 Hum63-M2 0.24 0.40 0.38 0.23 0.36 0.22 r/Cf r/Cf 0.32 r 0.34 0.21 0.32 0.20 0.30 0.19 0.28 0.26 0.26 0.18 0.27 0.28 0.29 0.30 0.31 0.32 0.33 0.28 0.29 0.30 0.31 0.32 r r Hum63-M3 0.24 0.23 r/Cf 0.22 0.21 0.20 0.19 0.18 0.17 0.28 0.29 0.30 0.31 0.32 0.33 0.34 0.35 r Figure S42. Scatchard plots for m-TMPipEOPP with multimeric G-quadruplexes. The change in the absorbance difference between 452 and 418 nm as a function of G-quadruplex concentration was used to construct Scatchard plots Table S1. Binding parameters for the interactions between m-TMPipEOPP and multimeric G-quadruplexes na Ka (×10-6 M-1)b na Ka (×10-6 M-1)b Hum 21 undetected undetected Hum 51-M2 0.46 1.10 Hum45 0.46 1.11 Hum 57-M1 0.48 1.30 Hum51 0.50 1.66 Hum 57-M2 0.47 1.38 Hum57 0.48 1.05 Hum 57-M3 0.50 1.08 Hum63 0.52 2.53 Hum 63-M1 0.46 2.08 Hum69 0.52 2.05 Hum 63-M2 0.50 1.10 Hum 51-M1 0.45 1.09 Hum 63-M3 0.50 1.08 G-quadruplex G-quadruplex a n is the number of m-TMPipEOPP-binding sites on the G-quadruplex b Ka is the binding constant for the interaction between m-TMPipEOPP and multimeric G-quadurplexes 9. Two possible binding modes between m-TMPipEOPP and multimeric G-quadruplexes Scheme S1. Two possible binding modes between m-TMPipEOPP and multimeric G-quadruplexes. 10. G-quadruplex-stabilizing abilities of m-TMPipEOPP to G-quadruplexes 10.1 Under dilute conditions Hum 45 Hum 21 1.0 Normalized absorbance Normalized absorbance 1.0 0.8 o 60.8 C 0.6 0.4 o 60.4 C 0.2 0.0 0.8 o 54.9 C 0.6 0.4 o 45.8 C 0.2 0.0 20 30 40 50 60 70 80 20 30 o 40 50 80 Hum 57 1.0 Normalized absorbance Normalized absorbance 70 Temperature ( C) Hum 51 0.8 o 55.6 C 0.6 0.4 o 47.6 C 0.2 0.0 1.0 0.8 o 59.0 C 0.6 0.4 o 49.8 C 0.2 0.0 20 30 40 50 60 70 20 30 o 40 50 60 70 80 o Temperature ( C) Temperature ( C) Hum 63 Hum 69 1.0 1.0 Normalized absorbance Normalized absorbance 60 o Temperature ( C) 0.8 o 60.3 C 0.6 0.4 o 51.4 C 0.2 0.0 0.8 o 55.2 C 0.6 0.4 o 48.6 C 0.2 0.0 20 30 40 50 60 o Temperature ( C) 70 80 20 30 40 50 60 70 80 o Temperature ( C) Figure S43. Melting temperature (T1/2) detection of G-quadruplexes in the absence (black) and presence (red) of 5 μM m-TMPipEOPP under dilute conditions. Scatter: experimental data, line: fitting curves. 10.2 Under molecular crowding conditions Hum 21 Hum 45 Normalized absorbance Normalized absorbance 1.0 0.8 o 70.6 C 0.6 0.4 o 69.6 C 0.2 0.0 1.0 0.8 o 56.6 C 0.6 0.4 o 51.5 C 0.2 0.0 20 30 40 50 60 70 80 90 20 30 40 70 80 Hum 57 Hum 51 1.0 Normalized absorbance Normalized absorbance 60 Temperature ( C) Temperature ( C) 0.8 o 57.9 C 0.6 0.4 o 53.1 C 0.2 1.0 0.8 o 62.4 C 0.6 0.4 o 56.0 C 0.2 0.0 0.0 20 30 40 50 60 70 20 80 30 o 40 50 60 70 80 o Temperature ( C) Temperature ( C) Hum 63 Hum 69 1.0 Normalized absorbance 1.0 Normalized absorbance 50 o o 0.8 o 63.4 C 0.6 0.4 o 57.4 C 0.2 0.8 o 58.1 C 0.6 0.4 o 52.2 C 0.2 0.0 0.0 20 30 40 50 60 70 o Temperature ( C) 80 20 30 40 50 60 70 80 90 o Temperature ( C) Figure S44. Melting temperature (T1/2) detection of G-quadruplexes in the absence (black) and presence (red) of 5 μM m-TMPipEOPP under molecular crowding conditions. Scatter: experimental data, line: fitting curves. 11. Stabilities of multimeric G-quadruplexes with different pocket sizes Under dilute conditions Hum51 Hum51-M1 Hum51-M2 Normalized absorbance 1.0 0.8 o 0.6 51.3 C 0.4 o 45.8 C o 47.6 C 0.2 0.0 20 30 40 50 60 70 o Normalized absorbance Temperature ( C) Hum57 Hum57-M1 Hum57-M2 Hum57-M3 1.0 0.8 o 0.6 51.4 C o 0.4 52.6 C o 45.6 C o 49.8 C 0.2 0.0 20 30 40 50 60 70 o Temperature ( C) Normalized absorbance 11.1 Hum63 Hum63-M1 Hum63-M2 Hum63-M3 1.0 0.8 o 0.6 51.4 C o 0.4 52.9 C o 45.8 C o 50.9 C 0.2 0.0 20 30 40 50 60 o Temperature ( C) 70 Figure S45. Melting temperature detection of multimeric G-quadruplexes with different pocket sizes under dilute conditions. Scatter: experimental data, line: fitting curves. Normalized absorbance Under molecular crowding conditions 1.0 Hum51 Hum51-M1 Hum51-M2 0.8 0.6 0.4 o o 55.2 C 51.4 C o 0.2 53.1 C 0.0 20 30 40 50 60 70 80 o Temperature ( C) Hum57 Hum57-M1 Hum57-M2 Hum57-M3 Normalized absorbance 1.0 0.8 o 0.6 57.5 C o 0.4 56.0 C o 50.7 C o 55.0 C 0.2 0.0 20 30 40 50 60 70 80 o Temperature ( C) Hum63 Hum63-M1 Hum63-M2 Hum63-M3 1.0 Normalized absorbance 11.2 0.8 o 0.6 57.4 C o 57.6 C o 0.4 51.5 C o 54.8 C 0.2 0.0 20 30 40 50 60 70 o Temperature ( C) 80 Figure S46. Melting temperature detection of multimeric G-quadruplexes with different pocket sizes under molecular crowding conditions. Scatter: experimental data, line: fitting curves.
© Copyright 2026 Paperzz