~ ~ JET-COOLED A-X SPECTRA OF THE βHYDROXYETHYLPEROXY RADICAL AND ITS ISOTOPOLOGUES MING-WEI CHEN, GABRIEL M. P. JUST*, TERRANCE J. CODD and TERRY A. MILLER Laser Spectroscopy Facility Department of Chemistry The Ohio State University * Current affiliation: Lawrence Berkeley National Laboratory 6/21/2010 Importance of the β-HEP has been presented in MI07*. G1G2G3 40 Conformer assignment on RT spectrum is only on the basis of vibronic analysis.* 35 30 ppm 25 Information from the jetcooled spectrum: 20 15 10 5 7200 7300 7400 7500 wavenumber / cm 7600 -1 7700 Obtain the rotational constants from the jet-cooled spectrum of the 7381 cm-1 band found in RT CRDS. Check the geometry from experiment and compare with the ab initio calculation. *See also: R. Chhantyal-Pun, N. D. Kline, P. S. Thomas and T. A. Miller J. Phys. Chem. Lett., 1, 1846 (2010) Diode laser (CW) Nd:YAG (20Hz) λ/2 P Ti:Sa Ring (CW) BD OI 45- 100 mJ / pulse Δν (FWHM) ∼ 7 - 30 MHz (FT limited) BS BS Ti:Sa Ti:Sa OC BS BS PZT Driver PD BS BD 45- 100 mJ / pulse Δν (FWHM) ∼ 7 - 30 MHz (FT limited) 1st stokes ∼ 1.3 μm ∼ 4 mJ Δν ∼ 200 MHz (limited by pressure broadening in H2) InGaAs Detector 67 cm BBO ∼ 1.3 μm ∼ 2mJ Δν ∼ 70 MHz (measured) + O2 Viton Poppet 5 mm 9 mm Electrode Electrode 5 cm 10 mm IR Beam -HV Previous similar slit-jet designs: D.J. Nesbitt group, Chem. Phys. Lett. 258, 207 (1996) R.J. Saykally group, Rev. Sci. Instrum. 67, 410 (1996) T. A. Miller group, Phys. Chem. Chem. Phys. 8, 1682 (2006). • radical densities of 1012 - 1013 molecules/cm3 (10 mm downstream, probed) • rotational temperature of 15 - 30 K (residual ΔνDoppler ~155MHz at 20K) • plasma voltage ~ 500 V, I 1 A (~ 400 mA typical), 100 µs length • dc and/or rf discharge, discharge localized between electrode plates, increased signal compared to longitudinal geometry 16 16 14 Δνspectral~250MHz (measured with SRS, residual ΔνDoppler ~155MHz) 14 12 ppm/pass 10 12 8 6 10 2 0 -2 7590 7595 7600 ppm/pass 4 excitation energy / cm 8 6 7605 7610 -1 4 2 0 -2 7605 7606 7607 excitation energy / cm NO3 talk on Wednesday: WJ04 -1 7608 Jet-cooled experimental data Specview simulation (asymmetric top) assuming Δν=250MHz, rotational constants are from MP2(Full)/6-31G* optimized geometry. 4 2 1 4 3 0 ppm/pass ppm/pass 3 2 1 -1 0 7380 7385 7390 excitation energy / cm 7395 -1 -1 7388.0 7400 7388.2 7388.4 7388.6 excitation energy / cm 7388.8 -1 7389.0 5 β-HEP 4 ppm / pass 3 2 1 0 -1 7380 7385 7390 7395 excitation energy / cm 7400 -1 H D S. Wu, P. Rupper, P. Dupré and T. A. Miller, 62nd International Symposium on Molecular Spectroscopy, RF09 (2007) ICH2CH2OD (Not commercially available) I H I H H H +D2O C C C C H H H HO H DO Band origin shifts. Better resolved rotational contour. DOCH2CH2OO DOCH2CH2OO HOCH 2CH2OO HOCH 2CH2OO 7380 7385 7390 excitation energy / cm 7395 7400 -1 7388 7390 7392 excitation energy / cm 7394 -1 DOCD2CD2OO β-DHEP-d4 β-DHEP DOCH2CH2OO β-HEP-d4 HOCD2CD2OO β-HEP HOCH 2CH2OO 7380 7385 7390 7395 excitation energy / cm 7400 -1 Isotope shifts observed among four different isotopologues. Confirming four different species observed in the experiments. Similar overall rotational contours for all four spectra, showing four measured species are having similar structure. 7405 β-DHEP-d4 DOCD2CD2OO β-DHEP DOCH2CH2OO β-HEP-d4 HOCD2CD2OO β-HEP HOCH 2CH2OO 7386 7388 7390 7392 7394 excitation energy / cm Upper = exp. data Lower = simulation from EA analysis Rotational constants and Lorentzian linewidth (ΔνL) are obtained for each isotopologue by evolutionary algorithm. 7396 -1 G. M. P. Just, P. Rupper, T. A. Miller and W. L. Meerts J. Chem. Phys., 131, 184303 (2009) G. M. P. Just, P. Rupper, T. A. Miller and W. L. Meerts Phys. Chem. Chem. Phys., 12, 4773 (2010) HOCH2CH2O2 DOCH2CH2O2 HOCD2CD2O2 DOCD2CD2O2 EA fit MP2 ** EA fit MP2** EA fit MP2** EA fit MP2** -1 -1 -1 -1 -1 -1 -1 value(cm ) (2.5σ) value(cm ) value(cm ) (2.5σ) value(cm ) value(cm ) (2.5σ) value(cm ) value(cm ) (2.5σ) value(cm-1) ground A B C 0.29282 (125) 0.14014 (94) 0.10125 (81) 0.29721 0.13839 0.10362 0.28629 (26) 0.13655 (19) 0.10137 (18) 0.28824 0.13754 0.10206 0.24645 (63) 0.12604 (63) 0.09930 (63) 0.25049 0.12902 0.09699 0.24222 (13) 0.12720 (13) 0.09440 (13) 0.24329 0.12840 0.09557 excited T 00 A B C T ROT (K) 7389.085 0.28238 0.14409 0.10115 26.16 Δν L (MHz) 7442 |μ b /μ a | 0.528 |μ c /μ a | 0.338 (33) (125) (100) (81) 7355.69 0.28517 0.14173 0.10393 .. 7391.846 0.27610 0.13857 0.10158 18.14 (3) (25) (19) (18) 7355.47 0.27617 0.14072 0.10231 .. 7390.35 0.24037 0.12602 0.09960 18.25 .. 3469 .. 7878 (fixed) 0.844 * 0.552 0.844 * 0.558 (fixed) 1.46 * 0.340 1.46 * 0.336 (70) (63) (63) (63) 7357.45 0.24277 0.13145 0.09690 .. 7392.740 0.23379 0.13044 0.09426 22.53 (18) (13) (19) (13) 7357.23 0.23540 0.13073 0.09542 .. .. 2472 .. (fixed) 0.844 * 0.541 0.844 * (fixed) 1.46 * 0.307 1.46 * *Theoretical electronic dipolemements are calculated by UCIS/6-31G* **ab initio calculated rotational constants are from the MP2(full)/6-31G*optimized geometry. L FWHM Natural linewidth ΔνL=7442 MHz* ~21 ps ΔνL=7878 MHz* ~20 ps 1 2 ΔνL=3469 MHz* ~46 ps ΔνL=2472 MHz* ~64 ps Excited state lifetime (τ) of β-HEP : ~20ps *1σ of EA estimated ΔνL is ~225MHz 16000 14000 energy / cm -1 12000 10000 8000 7206cm-1 c) 6000 4000 2000 0 Ground state barrier (+ZPE)a)-d): 6160-10530 cm-1 rxn. coordinate S. Olivella, A. Solé, J. Phys. Chem. 108, 11651 (2004) K. T. Kuwata, T. S. Dibble, E. Sliz, E. B. Peterson, J. Phys. Chem. A, 111, 5032 (2007) c) J. Zádor, R. X. Fernandes, Y. Georgievskii, G. Meloni, C. A. Taatjes, J. A. Miller, Proc. Combustion Inst. 32, 271 (2009) d) Present calculation with B3LYP/CBS/cc-pV5Z level of calculation. a) b) 16000 First excited state energies calculated by TD DFT/6311++G(d,p) 14000 energy / cm -1 12000 10000 8000 7206cm-1 c) 6000 4000 2000 0 Ground state barrier (+ZPE)a)-d): 6160-10530 cm-1 rxn. coordinate S. Olivella, A. Solé, J. Phys. Chem. 108, 11651 (2004) K. T. Kuwata, T. S. Dibble, E. Sliz, E. B. Peterson, J. Phys. Chem. A, 111, 5032 (2007) c) J. Zádor, R. X. Fernandes, Y. Georgievskii, G. Meloni, C. A. Taatjes, J. A. Miller, Proc. Combustion Inst. 32, 271 (2009) d) Present calculation with B3LYP/CBS/cc-pV5Z level of calculation. a) b) 16000 First excited state energies calculated by TD DFT/6311++G(d,p), shifted to ~ ~ match the A-X experimental excitation energy of β-HEP. 14000 energy / cm -1 12000 ΔEethoxy~355 cm-1 f) 10000 8000 ~7389 cm-1 e) 7206cm-1 c) 6000 4000 2000 0 Ground state barrier (+ZPE)a)-d): 6160-10530 cm-1 rxn. coordinate S. Olivella, A. Solé, J. Phys. Chem. 108, 11651 (2004) K. T. Kuwata, T. S. Dibble, E. Sliz, E. B. Peterson, J. Phys. Chem. A, 111, 5032 (2007) c) J. Zádor, R. X. Fernandes, Y. Georgievskii, G. Meloni, C. A. Taatjes, J. A. Miller, Proc. Combustion Inst. 32, 271 (2009) d) Present calculation with B3LYP/CBS/cc-pV5Z level of calculation. e) Present jet-cooled data. f) See TG14. a) b) 16000 First excited state energies calculated by TD DFT/6311++G(d,p), shifted to ~ ~ match the A-X experimental excitation energy of β-HEP. 14000 energy / cm -1 12000 ΔEethoxy~355 cm-1 f) 10000 8000 ~7389 cm-1 e) 7206cm-1 c) 6000 4000 2000 0 Ground state barrier (+ZPE)a)-d): 6160-10530 cm-1 rxn. coordinate S. Olivella, A. Solé, J. Phys. Chem. 108, 11651 (2004) K. T. Kuwata, T. S. Dibble, E. Sliz, E. B. Peterson, J. Phys. Chem. A, 111, 5032 (2007) c) J. Zádor, R. X. Fernandes, Y. Georgievskii, G. Meloni, C. A. Taatjes, J. A. Miller, Proc. Combustion Inst. 32, 271 (2009) d) Present calculation with B3LYP/CBS/cc-pV5Z level of calculation. e) Present jet-cooled data. f) See TG14. a) b) 16000 First excited state energies calculated by TD DFT/6311++G(d,p), shifted to ~ ~ match the A-X experimental excitation energy of β-HEP. 14000 energy / cm -1 12000 10000 ΔEethoxy~355 cm-1 f) ~7389 cm-1 e) 8000 7206cm-1 c) I.C. 6000 4000 2000 0 Ground state barrier (+ZPE)a)-d): 6160-10530 cm-1 rxn. coordinate S. Olivella, A. Solé, J. Phys. Chem. 108, 11651 (2004) K. T. Kuwata, T. S. Dibble, E. Sliz, E. B. Peterson, J. Phys. Chem. A, 111, 5032 (2007) c) J. Zádor, R. X. Fernandes, Y. Georgievskii, G. Meloni, C. A. Taatjes, J. A. Miller, Proc. Combustion Inst. 32, 271 (2009) d) Present calculation with B3LYP/CBS/cc-pV5Z level of calculation. e) Present jet-cooled data. f) See TG14. a) b) 16000 First excited state energies calculated by TD DFT/6311++G(d,p), shifted to ~ ~ match the A-X experimental excitation energy of β-HEP. 14000 energy / cm -1 12000 10000 ΔEethoxy~355 cm-1 f) ~7389 cm-1 e) I.C. 8000 7206cm-1 c) 6000 4000 2000 0 Ground state barrier (+ZPE)a)-d): 6160-10530 cm-1 rxn. coordinate S. Olivella, A. Solé, J. Phys. Chem. 108, 11651 (2004) K. T. Kuwata, T. S. Dibble, E. Sliz, E. B. Peterson, J. Phys. Chem. A, 111, 5032 (2007) c) J. Zádor, R. X. Fernandes, Y. Georgievskii, G. Meloni, C. A. Taatjes, J. A. Miller, Proc. Combustion Inst. 32, 271 (2009) d) Present calculation with B3LYP/CBS/cc-pV5Z level of calculation. e) Present jet-cooled data. f) See TG14. a) b) Conclusions: Jet-cooled CRD origin band spectra of HEP G1G2G3 conformer and other three isotopologues are successfully obtained and analyzed with evolutionary algorithm. Unusual lifetime broadening of spectra are measured and isotope effect are strongly correlated to the intramolecular hydrogen migration from the OH to the OO sites. Future works: Clarify the mechanism, with the assistance of higher level ab initio calculation. A newly opened application of jet-cooled HRCRDS and EA to characterize the hydrogen migration of radicals. The Miller Group (OSU): Dr. Miller Dr. Meerts Dmitry Melnik (MI13) (EA and computer resource) Phillip Thomas (MI04) Jinjun Liu (TG14) Rabi Chhantyal-Pun (MI07) National Taiwan University: Terrance Codd Pei-Nung Chen Neal Kline (discussion of synthesis) Funding: NSF DOE Your attention! NO3 talk on Wednesday: WJ04
© Copyright 2026 Paperzz