Curves and Interpolation Dr. Scott Schaefer 1 Smooth Curves How do we create smooth curves? 2/61 Smooth Curves How do we create smooth curves? Parametric curves with polynomials p(t ) x(t ), y(t ) 3/61 Smooth Curves Controlling the shape of the curve x(t ) a bt ct dt 2 3 y(t ) e ft gt ht 2 3 4/61 Smooth Curves Controlling the shape of the curve x(t ) t y (t ) 1 t t t 2 3 5/61 Smooth Curves Controlling the shape of the curve x(t ) t y (t ) 3 t t t 2 3 6/61 Smooth Curves Controlling the shape of the curve x(t ) t y (t ) 1 t t t 2 3 7/61 Smooth Curves Controlling the shape of the curve x(t ) t y (t ) 1 t t t 2 3 8/61 Smooth Curves Controlling the shape of the curve x(t ) t y (t ) 1 t t t 2 3 9/61 Smooth Curves Controlling the shape of the curve x(t ) t y (t ) 1 t 3t t 2 3 10/61 Smooth Curves Controlling the shape of the curve x(t ) t y (t ) 1 t t t 2 3 11/61 Smooth Curves Controlling the shape of the curve x(t ) t y (t ) 1 t t t 2 3 12/61 Smooth Curves Controlling the shape of the curve x(t ) t y (t ) 1 t t t 2 3 Power-basis coefficients not intuitive for controlling shape of curve!!! 13/61 Interpolation Find a polynomial y(t) such that y(ti)=yi y (t ) c0 c1t c2t 2 c3t 3 y t 14/61 Interpolation Find a polynomial y(t) such that y(ti)=yi y (t ) c0 c1t c2t 2 c3t 3 y 1 t t2 c0 c1 ... t n c2 y (t ) c n t 15/61 Interpolation Find a polynomial y(t) such that y(ti)=yi y (t ) c0 c1t c2t 2 c3t 3 y c0 c1 1 t t 2 ... t n c2 y (t ) c basis n t 16/61 Interpolation Find a polynomial y(t) such that y(ti)=yi y (t ) c0 c1t c2t 2 c3t 3 y c0 c1 1 t t 2 ... t n c2 y (t ) c coefficients n t 17/61 Interpolation Find a polynomial y(t) such that y(ti)=yi y (t ) c0 c1t c2t 2 c3t 3 y 1 t 0 1 t1 1 t n t0 2 t1 2 tn 2 c0 y0 ... t0 c y1 n 1 ... t1 c2 y2 n ... t n cn y n n t 18/61 Interpolation Find a polynomial y(t) such that y(ti)=yi y (t ) c0 c1t c2t 2 c3t 3 y 1 t 0 1 t1 1 t n t0 2 t1 2 tn 2 c0 y0 ... t0 c y1 n 1 ... t1 c2 y2 n ... t n cn y n n t Vandermonde matrix 19/61 Interpolation Find a polynomial y(t) such that y(ti)=yi y (t ) c0 c1t c2t 2 c3t 3 y 1 1 1 1 0 c0 3 1 1 1 c1 1 2 4 8 c2 3 3 9 27 c3 1 0 0 t 20/61 Interpolation Find a polynomial y(t) such that y(ti)=yi y (t ) c0 c1t c2t 2 c3t 3 y c0 3 c1 20 3 c 6 2 c 1 3 3 t 21/61 Interpolation Find a polynomial y(t) such that y(ti)=yi y Intuitive control of curve using “control points”!!! t 22/61 Interpolation Perform interpolation for each component separately Combine result to obtain parametric curve y p(t ) x(t ), y(t ) x 23/61 Interpolation Perform interpolation for each component separately Combine result to obtain parametric curve y p(t ) x(t ), y(t ) x 24/61 Interpolation Perform interpolation for each component separately Combine result to obtain parametric curve y p(t ) x(t ), y(t ) x 25/61 Generalized Vandermonde Matrices Assume different basis functions fi(t) y(t ) ci f i (t ) i f 0 (t0 ) f 0 (t1 ) f (t ) 0 n f1 (t0 ) f 2 (t0 ) ... f1 (t1 ) f 2 (t1 ) ... f1 (t n ) f 2 (t n ) ... c0 y0 f n (t0 ) c1 y1 f n (t1 ) c2 y 2 f n (t n ) cn y n 26/61 LaGrange Polynomials Explicit form for interpolating polynomial! Li (t ) j i (t t j ) (ti t j ) 27/61 LaGrange Polynomials Explicit form for interpolating polynomial! Li (t ) j i (t t j ) (ti t j ) 1 0.8 0.6 0.4 0.2 1.5 2 2.5 3 3.5 4 -0.2 28/61 LaGrange Polynomials Explicit form for interpolating polynomial! Li (t ) j i (t t j ) (ti t j ) 1 0.8 0.6 0.4 0.2 1.5 2 2.5 3 3.5 4 -0.2 29/61 LaGrange Polynomials Explicit form for interpolating polynomial! Li (t ) j i (t t j ) (ti t j ) 1 0.8 0.6 0.4 0.2 1.5 2 2.5 3 3.5 4 -0.2 30/61 LaGrange Polynomials Explicit form for interpolating polynomial! Li (t ) j i (t t j ) (ti t j ) 1 0.8 0.6 0.4 0.2 1.5 2 2.5 3 3.5 4 -0.2 31/61 LaGrange Polynomials Explicit form for interpolating polynomial! Li (t ) j i (t t j ) (ti t j ) n y (t ) yi Li (t ) i 0 32/61 Neville’s Algorithm Identical to matrix method but uses a geometric construction y y1 y0 0 1 2 3 t 33/61 Neville’s Algorithm Identical to matrix method but uses a geometric construction f (t ) (1 t ) y0 t y1 y y1 f (t ) y0 0 1 2 3 t 34/61 Neville’s Algorithm Identical to matrix method but uses a geometric construction f (t ) (1 t ) y0 t y1 g (t ) (2 t ) y1 (t 1) y2 y y1 f (t ) g (t ) y2 y0 0 1 2 3 t 35/61 Neville’s Algorithm Identical to matrix method but uses a geometric construction f (t ) (1 t ) y0 t y1 g (t ) (2 t ) y1 (t 1) y2 y (2 t ) f (t ) t g (t ) h(t ) 2 y1 h(t ) y2 y0 0 1 2 3 t 36/61 Neville’s Algorithm Identical to matrix method but uses a geometric construction f (t ) (1 t ) y0 t y1 g (t ) (2 t ) y1 (t 1) y2 y (2 t ) f (t ) t g (t ) h(t ) 2 y1 h(t ) y2 y0 0 1 2 (2 1) f (1) 1 g (1) h(1) 2 3 t 37/61 Neville’s Algorithm Identical to matrix method but uses a geometric construction f (t ) (1 t ) y0 t y1 g (t ) (2 t ) y1 (t 1) y2 y (2 t ) f (t ) t g (t ) h(t ) 2 y1 h(t ) y2 y0 0 1 2 y1 y1 h(1) y1 2 3 t 38/61 Neville’s Algorithm Identical to matrix method but uses a geometric construction f (t ) (1 t ) y0 t y1 g (t ) (2 t ) y1 (t 1) y2 y (2 t ) f (t ) t g (t ) h(t ) 2 y1 h(t ) y2 y0 0 1 2 (2 0) f (0) 0 g (0) h(0) 2 3 t 39/61 Neville’s Algorithm Identical to matrix method but uses a geometric construction f (t ) (1 t ) y0 t y1 g (t ) (2 t ) y1 (t 1) y2 y (2 t ) f (t ) t g (t ) h(t ) 2 y1 h(t ) y2 y0 0 1 2 2 y0 h ( 0) y0 2 3 t 40/61 Neville’s Algorithm Identical to matrix method but uses a geometric construction f (t ) (1 t ) y0 t y1 g (t ) (2 t ) y1 (t 1) y2 y (2 t ) f (t ) t g (t ) h(t ) 2 y1 h(t ) y2 y0 0 1 2 (2 2) f (2) 2 g (2) h(2) 2 3 t 41/61 Neville’s Algorithm Identical to matrix method but uses a geometric construction f (t ) (1 t ) y0 t y1 g (t ) (2 t ) y1 (t 1) y2 y (2 t ) f (t ) t g (t ) h(t ) 2 y1 h(t ) y2 y0 0 1 2 2 y2 h ( 2) y2 2 3 t 42/61 Neville’s Algorithm Identical to matrix method but uses a geometric construction y y1 y3 h(t ) y2 y0 0 1 2 3 t 43/61 Neville’s Algorithm Identical to matrix method but uses a geometric construction y y1 y2 y0 0 y3 1 2 k (t ) 3 t 44/61 Neville’s Algorithm Identical to matrix method but uses a geometric construction (3 t )h(t ) t k (t ) m(t ) 3 y y1 y3 m(t ) y2 y0 0 1 2 3 t 45/61 Neville’s Algorithm t1 t t1 t0 y0 y01 (t ) t t0 t1 t0 t2 t t 2 t1 y1 y12 (t ) y23 (t ) t t1 t 2 t1 t3 t t3 t 2 y2 t t2 t3 t 2 y3 46/61 Neville’s Algorithm t2 t t 2 t0 t1 t t1 t0 y0 y01 (t ) y012 (t ) t t0 t1 t0 t t0 t 2 t0 t2 t t 2 t1 y1 t3 t t3 t1 y12 (t ) y123 (t ) t t1 t3 t1 y23 (t ) t t1 t 2 t1 t3 t t3 t 2 y2 t t2 t3 t 2 y3 47/61 Neville’s Algorithm y0123 (t ) t3 t t3 t 0 t2 t t 2 t0 t1 t t1 t0 y0 y01 (t ) y012 (t ) t t0 t1 t0 t t0 t3 t 0 t t0 t 2 t0 t2 t t 2 t1 y1 t3 t t3 t1 y12 (t ) y123 (t ) t t1 t3 t1 y23 (t ) t t1 t 2 t1 t3 t t3 t 2 y2 t t2 t3 t 2 y3 48/61 Neville’s Algorithm Claim: The polynomial produced by Neville’s algorithm is unique 49/61 Neville’s Algorithm Claim: The polynomial produced by Neville’s algorithm is unique Proof: Assume that there are two degree n polynomials a(t ) b(t ) such that a(ti)=b(ti)=yi for i=0…n. 50/61 Neville’s Algorithm Claim: The polynomial produced by Neville’s algorithm is unique Proof: Assume that there are two degree n polynomials a(t ) b(t ) such that a(ti)=b(ti)=yi for i=0…n. c(t)=a(t)-b(t) is also a polynomial of degree n 51/61 Neville’s Algorithm Claim: The polynomial produced by Neville’s algorithm is unique Proof: Assume that there are two degree n polynomials a(t ) b(t ) such that a(ti)=b(ti)=yi for i=0…n. c(t)=a(t)-b(t) is also a polynomial of degree n c(t) has n+1 roots at each of the ti 52/61 Neville’s Algorithm Claim: The polynomial produced by Neville’s algorithm is unique Proof: Assume that there are two degree n polynomials a(t ) b(t ) such that a(ti)=b(ti)=yi for i=0…n. c(t)=a(t)-b(t) is also a polynomial of degree n c(t) has n+1 roots at each of the ti Polynomials of degree n can have at most n roots! 53/61 Hermite Interpolation Find a polynomial y(t) that interpolates yi, (m ) (1) (2) yi , yi , …, yi Always a unique y(t) of degree n 1 mi i i 54/61 Hermite Interpolation Find a polynomial y(t) that interpolates yi, (m ) (1) (2) yi , yi , …, yi Always a unique y(t) of degree n 1 mi i i f 0 (t0 ) f1 (t0 ) (1) f1 (t0 ) f 0 (t1 ) (1) f 0 (t1 ) f 0 (t0 ) f 2 (t0 ) (1) f 2 (t0 ) (1) f1 (t1 ) (1) f 2 (t1 ) f1 (t1 ) f 2 (t1 ) (1) f 3 (t0 ) c0 y0 (1) (1) f 3 (t0 ) c1 y0 (1) (1) f 3 (t1 ) c2 y1 f 3 (t1 ) c3 y1 55/61 Hermite Interpolation Find a polynomial y(t) that interpolates yi, (m ) (1) (2) yi , yi , …, yi Always a unique y(t) of degree n 1 mi i i 1 t0 0 1 0 1 1 t 1 t0 2 2t0 2t1 t1 2 3 t0 c0 y0 (1) 2 3t0 c1 y0 (1) 2 3t1 c2 y1 3 t1 c3 y1 56/61 Hermite Interpolation Find a polynomial y(t) that interpolates yi, (m ) (1) (2) yi , yi , …, yi Always a unique y(t) of degree n 1 mi i i c0 1 t0 c1 0 1 c 0 1 2 c 1 t 3 1 t0 2 2t0 2t1 t1 2 t0 2 3t0 2 3t1 3 t1 3 1 y0 (1) y0 y (1) 1 y 1 57/61 Hermite Interpolation Find a polynomial y(t) that interpolates yi, (m ) (1) (2) yi , yi , …, yi Always a unique y(t) of degree n 1 mi i i y (t ) 1 t t 2 c0 c 3 1 t 1 t t 2 c 2 c 3 1 t0 1 3 0 t 0 1 1 t 1 t0 2 2t0 2t1 t1 2 t0 2 3t0 2 3t1 3 t1 3 1 y0 (1) y0 y (1) 1 y 1 58/61 Hermite Interpolation Find a polynomial y(t) that interpolates yi, (m ) (1) (2) yi , yi , …, yi Always a unique y(t) of degree n 1 mi i i H 0 3 (t 1) 2 (1 2t ) 3 2 H1 (t 1) t 3 2 ( t 1 ) t H 2 H 3 (3 2t )t 2 3 59/61 Hermite Interpolation Find a polynomial y(t) that interpolates yi, (m ) (1) (2) yi , yi , …, yi Always a unique y(t) of degree n 1 mi i i 60/61 Hermite Interpolation Find a polynomial y(t) that interpolates yi, (m ) (1) (2) yi , yi , …, yi Always a unique y(t) of degree n 1 mi i i 61/61
© Copyright 2026 Paperzz