Physics - Lecture Notes Notes: Lecture 3 RELATIVITY OF MOTION Antiderivative ? Definite integral Lecture 3 - 1 G( x ) d ( F ( x )) = G ( x ) F ( x ) → G ( x ) dx Learn more: http://ocw.mit.edu/ans7870/resources/Strang/str angtext.htm F ( x) derivative x Calculus, Gilbert Strang: e-book diferentation x x G ( x ) → F ( x ) ?? antiderivative ∫ G ( x )dx = F ( x ) + C integrand function Bogdan Żółtowski 2012 d dx integration indefinite integral [∫ F ( x )dx ] = F ( x ) primary function Integration (properties): ∫ K ⋅ f ( x )dx = K ⋅ ∫ f ( x )dx ∫ [ f ( x ) + g( x )]dx = ∫ f ( x )dx + ∫ g( x )dx ∫x n dx = x n +1 +C n+1 ( n ≠ −1) 1 ∫ x dx = ln x + C ∫e kx dx = 1 x e +C k ∫ sin dx = − cos x + C ∫ cos xdx = sin x + C 1 ∫ sin 2 x dx = tan x + C Key terms: antiderivative, integrand function, primary function, constant of integration - 34 - Physics - Lecture Notes Bogdan Żółtowski 2012 Notes: Differential equations Lecture 3 - 2 Example Unique solution of E calls for the additional information concerning values of the function and its derivatives at given variable value – “Initial conditions” Volume of that information depends on the order of DE. d2y dy −2 + y=0 2 dx dx y ( x ) = xe x y( x ) ? Learn more: dny ⇒ y( x ) = f ( x , y , y ' , y ' ' , y n −1 ) n dx y ( x o ) = y o ; y ' ( x o ) = y1 ; ... y n −1 ( x o ) = y n −1 solving DE initial value problem (IVP) Ordinary differential equations ODE: function of one variable Partial differential equations PDE: function of more than one variable ∂2E y ∂x 2 = µ 0ε 0 ∂2E y ∂t 2 Key terms: initial conditions - 35 - http://ocw.mit.edu/ans7870/resources/Strang/str angtext.htm Calculus, Gilbert Strang: e-book
© Copyright 2026 Paperzz