Chap. 16 Convex set and
optimization
A is a convex set
(0 1) x1 , x 2 A x1 (1 )x 2 A
convex
x x1 (1 ) x2
nonconvex
1
Upper contour set
lower contour set
U(y)
y f ( x1, x2 ,.., xn )
Upper contour set
U ( y ) {( x1, x2 ,..., xn ) | f ( x1, x2 ,..., xn ) y}
n
Lower contour set
D( y ) {( x1, x2 ,..., xn ) | f ( x1, x2 ,..., xn ) y}
n
2
x2
upper contour set
y≤f(x1,x2)
lower contour
set
y≥f(x1,x2)
y=f(x1,x2)
x1
3
y=4-(x1-4)2-(x2-3)2
x2
lower
contour set
y≥f(x1,x2)
upper contour
set
y≤f(x1,x2)
y=f(x1,x2)
x1
4
y=-4+(x1-4)2+(x2-3)2
x2
lower contour
set
y≥f(x1,x2)
upper
contour set
y≤f(x1,x2)
y=f(x1,x2)
x1
5
x2
U(y)
upper contour
set
y≤f(x1,x2)
lower
contour set
y≥f(x1,x2)
f1>0
f2>0
y=f(x1,x2)
x1
upper contour set is convex
=quasi-concave function
6
x2
lower
contour set
y≥f(x1,x2)
U(y)
upper
contour set
y≤f(x1,x2)
f1<0
f2<0
y=f(x1,x2)
x1
upper contour set is convex
=quasi-concave function
7
x2
f1>0
upper
contour set
f2>0
y≤f(x1,x2)
lower
contour set
D(y)
y≥f(x1,x2)
y=f(x1,x2)
x1
lower contour set is convex
=quasi-convex function
8
x2
D(y)
lower
contour set
f1<0
f2<0
y≥f(x1,x2)
upper
contour set
y≤f(x1,x2)
y=f(x1,x2)
x1
lower contour set is convex
=quasi-convex function
9
hypo graph = set of (x,y) which
satisfies y≤f(x)
y
y≤f(x)
hypograph
y=f(x)
x
hypo graph is a convex set
=a concave function
10
epigraphe = set of (x,y) which
satisfies y≥f(x)
y
y=f(x)
epigraphe
y≥f(x)
x
epigraphe is a convex set
=a convex function
11
The semi- concavity function,
the semi- convexity functionn
multivariable function y=f(x)
(x )
y f (x) is quasi - concave
U ( y) is a convex set for any y
y f (x) is quasi - convex
D( y) is a convex set for any y
12
The necessary and sufficient
condition of quasi-concavity
y f (x) is quasi - concave
f (x1 ) f (x2 ) f (x1 (1 )x2 ) f (x2 )
(0 1)
x1 , x2 U ( y) f (x1 ) y, f (x2 ) y
Suppose f (x1 ) f (x2 ) y
f (x1 (1 )x2 ) f (x2 ) y x U (y)
13
Strictly quasi-concave functions,
strictly quasi-convex functions
y f (x) is strictly quasi - concave
f (x1 ) f (x2 ) f (x1 (1 )x2 ) f (x2 )
(0 1)
y f (x) is (strictly)quasi - convex
f (x1 ) f (x2 ) f (x1 (1 )x2 ) f (x2 )
(0 1)
[]
14
x1
x1 (1 )x 2
x2
15
Strictly quasi-concave functions
and marginal rate of substitution
y f ( x1 , x2 ) is strictly quasi - concave
f2 0
On the border line of U ( y ) the absolute of
dx2
the slope
is decreasing
dx1
dx2
f1
By theimplicit function theorem
dx1 f 2
16
Strictly quasi-concave functions
and marginal rate of substitution
d dx2 d f1 f1 f1 dx2
dx1 dx1 dx1 f 2 x1 f 2 x2 f 2 dx1
f11 f 2 f1 f 21 f12 f 2 f1 f 22 f1
2
2
( f2 )
( f2 )
f2
2
2
2
2
f11 f 2 f1 f 21 f 2 f12 f 2 f1 f1 f 22 f11 f 2 f 22 f1 2 f12 f1 f 2
0
3
3
( f2 )
( f2 )
17
Necessary and sufficient conditions
for strictly quasi-concave functions
If f 2 0, f is strictly quasi - concave
2 f 21 f1 f 2 f11 f 2 f 22 f1 0
2
2
d dx2
0 If f 2 0, with
,
dx1 dx1
f11 f 2 f f 2 f12 f1 f 2
0
3
( f2 )
2
2
22 1
f is stricly quasi - concave
2 f 21 f1 f 2 f11 f 2 f 22 f1 0
2
2
18
Strictly quasi-concave functions
f1>0
f1<0
f2<0
f2>0
The slope approaches
0 as x1 goes up.
The slope increases
as x1 goes up.
19
Necessary and sufficient conditions
for strictly quasi- concave, quasiconvex functions
f is strictly quasi - concave
2 f 21 f1 f 2 f11 f 2 f 22 f1 0
f is quasi - concave
2
2
2 f 21 f1 f 2 f11 f 2 f 22 f1 0
f is (strictly)quasi - convex
2
2
2 f 21 f1 f 2 f11 f 2 f 22 f1 0
[ ]
2
2
20
Quasi- concavity of concave functions
y f (x) is concave quasi - concave
f (x ) f (x1 (1 )x2 ) f (x1 ) (1 ) f (x2 )
x1 , x2 , (0 1)
x1 , x2 U ( y) f (x1 ) y f (x2 ) y
f (x ) f (x1 ) (1 ) f (x2 ) y (1 ) y y
x U (y)
y f (x) is convex quasi - convex
21
Quasi-concavity of Cobb-Douglas
function
F ( K , L) AK L
The iso-quant curve
A, , 0
Q F ( K , L) AK L
L h( K , Q ) K
1
Q
A
1
h( K , Q)
1 Q
RTS12
K
K
A
22
Quasi-concavity of Cobb-Douglas
function
1
h( K , Q)
1 Q
RTS12
K
K
A
h( K , Q )
1 K
2
K
2
2
1
Q
0
A
always quasi-concave
FKK FLL F
2
KL
{ ( 1) ( 1) 2 2}A2 K 2 2 L2 2
(1 ) A K
2
2 2
1 convex
2 2
L
0
23
It mediates between CobbDouglas function.
F ( K , L) AK L
A, , 0
always quasi-concave
1 decreasing return to scale,
concave
1 constant return toscale
1 increasing return toscale
24
© Copyright 2026 Paperzz