3/10/2013 EECS 498/598: Nanocircuits and Nanoarchitectures Lecture 1: Introduction to Nanotelectronic Devices (Sept. 5) Lectures 2: ITRS Nanoelectronics Road Map (Sept 7) Lecture 3: Nanodevices; Guest Lecture by Prof. Lu (Sept. 12) EECS 498/598: Nanocircuits and Nanoarchitectures Lecture 4: Overview of Photonics Device; Guest Lecture by Prof. Ku (Sept. 14) Lectures 5: Quantum Device Modeling for Nano-CAD (Sept 19) Lectures 6-8: RTD-Based Digital Circuit Design (Sept 21, 26, 28) Lectures 9-12: Class Presentations (ITRS) (Sept. 30, Oct. 3, Oct. 5, Oct. 10) Instructor: Prof. Pinaki Mazumder Tuesday and Thursday @ 3:00 – 4:30 p.m. Lecture 1: Introduction to Nanoelectronics Fall 2006 Prof. P. Mazumder Lecture 13: Cellular Nonlinear Network Nanoarchitectures (Oct 12) Lecture 14: Quantum-Dot Based Logic and Local Computational Models (Oct 19) Lectures 15 & 16: Molecular Electronics Circuits (Oct 24, Oct 26) Lectures 17-21: Class Presentations (Oct. 31, Nov 2, Nov 7, Nov 9, Nov 14) Lecture 22: Nano Tube/Nano Wire Based Digital Logic Design (Nov 16) Lectures 23 & 24: Quantum Cellular Array Based Logic Circuits (Nov 21, Nov 28) Lectures 25: Miscellaneous Topics like Photonics, Plasmonics, Quantum Computing, etc. (Nov 28) Lectures 26-29: Project Presentations (Dec 1, Dec 5, Dec 7, Dec 12) Fall 2006 Prof. P. Mazumder Fall 2006 Prof. P. Mazumder Lecture #1 How small is Nano? (A movie) What is Nanotechnology? What is Nanoelectronics? What are Emerging Devices? About the Course Fall 2006 Prof. P. Mazumder 1 3/10/2013 Power of 10 A sense of nanoscale X0.1 x1 x.001 x.01 X1 Fall 2006 Prof. P. Mazumder Fall 2006 Prof. P. Mazumder Courtesy Mark Rattner Definition of Nanotechnology “Working at the atomic, molecular, supermolecular levels, in the length scale approximately 1-10 nm range, in order to understand and create materials, devices and systems with fundamentally new properties and functions because of their small structure” --- Mike Roco, National Nanotechnology Initiative (NNI). However, Intel prefers the range from 1-100 nm so that conventional CMOS devices (< 90 nm) are part of Nanoelectronics Evolution. Fall 2006 Prof. P. Mazumder Fall 2006 Prof. P. Mazumder 2 3/10/2013 Multiple Perspectives of Roadmap for Nanoelectronics Intel Device Roadmap • Intel Perspective (shrinking driven) Nano-scale CMOS, Nanowire FET, Carbon Nano Tube (CNT) FET • Brick Wall Perspective Post CMOS Devices in post-shrinking era • Concurrent Advancements (ITRS Roadmap) • Evolutionary v. Revolutionary Devices Fall 2006 Prof. P. Mazumder Fall 2006 Intel keeps startling the Nano world by inventing yet smaller CMOS FET’s Fall 2006 Prof. P. Mazumder 10,000 times faster than CMOS Prof. P. Mazumder Fall 2006 Prof. P. Mazumder 3 3/10/2013 DARPA Si Nanoelectronics Research Vision 1000 Cost (uc/device) Silicide, Local interconnect Cu 100 100 Low k SOI QMOS 10 10 Feature Size Production Yr. 1 Vgs = 5 Vgs = 4 250 1997 INTEL Model “No known solutions” -SIA ‘97 180 1999 150 2001 130 2003 Delay x Power (fJ/device) 1000 1 90 2006 60 2009 40 2012 Change of Electronic Transport Mode Prof. P. Mazumder V =3 Fall 2006 gs Fall 2006 Prof. P. Mazumder Fall 2006 Prof. P. Mazumder Vgs = 2 Vgs = 1 1 2 3 Brick Wall Perspective RTD Single Electronics 1/Size RTD Vertical Gate Structure RTD Molecular Switch Bulk CMOS SOI Brick-wall Model Today Fall 2006 2020 Prof. P. Mazumder Nanotubes 2040 Source: TI, Denny Buss, ICECS2001 4 3/10/2013 CONCURRENT ADVANCEMENTS Evolution of CMOS and Revolutionary Devices Concurrent Model of the Roadmap Intel Tri-gate FET Fall 2006 Fall 2006 Prof. P. Mazumder Prof. P. Mazumder Fall 2006 Fall 2006 Prof. P. Mazumder Prof. P. Mazumder ITRS IBM researchers use a single carbon nanotube bundle (blue) to fashion a logic circuit on a substrate patterned with three gold electrodes (yellow). By selectively removing part of a protective polymer coat (PMMA), the group is able to form the needed p-type and n-type transistors within the single nanotube bundle. 5 3/10/2013 Prof. P. Mazumder Fall 2006 Outer Barriers Prof. P. Mazumder Fall 2006 Quantum Cellular Array (QCA) Each cell is occupied by two electrons. There are two ground-state configurations, Quantum Cellular Array (QCA) Quantum Dots can be configured into various types of logic blocks Like the majority gate, full adder, memory, registers, etc. corresponding to “polarizations” of +1 and –1. Inter-dot Barriers Cell (Square) and Quantum Dot (Circle) Majority logic of QCA is used cell 1 cell 2 cell 5 cell 4 Fall 2006 P= -1 Logic 0 Prof. P. Mazumder P= +1 Logic 1 cell 3 Fall 2006 Prof. P. Mazumder Diagram by P. Wu 6 3/10/2013 Fall 2006 Prof. P. Mazumder Fall 2006 Prof. P. Mazumder Fall 2006 Prof. P. Mazumder Fall 2006 Prof. P. Mazumder 7 3/10/2013 EECS 498/598: Nanocircuits and Nanoarchitectures Evaluation Criteria: Lecture 1: Introduction to Nanotelectronic Devices (Sept. 5) Lectures 2: ITRS Nanoelectronics Road Map (Sept 7) Lecture 3: Nanodevices; Guest Lecture by Prof. Lu (Sept. 12) Lecture 4: Overview of Photonics Device; Guest Lecture by Prof. Ku (Sept. 14) Lectures 5: Quantum Device Modeling for Nano-CAD (Sept 19) Lectures 6-8: RTD-Based Digital Circuit Design (Sept 21, 26, 28) Lectures 9-12: Class Presentations (ITRS) (Sept. 30, Oct. 3, Oct. 5, Oct. 10) Lecture 13: Cellular Nonlinear Network Nanoarchitectures (Oct 12) 1. 2. 3. In-class presentation (2) Written assignment related to presentation Final project To be discussed Final Report Presentation Grading: Average grade: A- (undergrad) Average grade: A A- (grad) Lecture 14: Quantum-Dot Based Logic and Local Computational Models (Oct 19) Lectures 15 & 16: Molecular Electronics Circuits (Oct 24, Oct 26) Lectures 17-21: Class Presentations (Oct. 31, Nov 2, Nov 7, Nov 9, Nov 14) Lecture 22: Nano Tube/Nano Wire Based Digital Logic Design (Nov 16) Lectures 23 & 24: Quantum Cellular Array Based Logic Circuits (Nov 21, Nov 28) Lectures 25: Miscellaneous Topics like Photonics, Plasmonics, Quantum Computing, etc. (Nov 28) Lectures 26-29: Project Presentations (Dec 1, Dec 5, Dec 7, Dec 12) Fall 2006 Prof. P. Mazumder END OF LECTURE 1 Points Allocation: Two presentations (30%) Two assignments (20%) Final Project (50%) (distribution is subject to change) Fall 2006 Prof. P. Mazumder EECS 498/598: Nanocircuits and Nanoarchitectures Instructor: Prof. Pinaki Mazumder Tuesday and Thursday @ 3:00 – 4:30 p.m. Lecture 2: ITRS Roadmap & Nano Devices Fall 2006 Prof. P. Mazumder Fall 2006 Prof. P. Mazumder 8 3/10/2013 Nanotechnology Industry Segmentation ITRS ROADMAP FOR EMERGINE MODELS & TECHNOLOGIES Information Technology 20% Hybrid Materials 34% Semiconductor 17% Other 10% Medical/Healthcare 8% • MEMORY ARRAYS • LOGIC CIRCUITS • ARCHITECTURES Nano MEMS 11% Fall 2006 Prof. P. Mazumder RISK & PAYOFF; OPPORTUNITIES Prof.& P. Mazumder Fall 2006CHALLENGES Fall 2006 Prof. P. Mazumder Fall 2006 ITRS 2005 Road Map Prof. P. Mazumder 9 3/10/2013 < 30 = (PC*RC) < 40 <50 >50 Fall 2006 Prof. P. Mazumder Prof. P.2Mazumder Fall 2006 Performance Criterion (PC): 3 better, comparable, 1 worse than CMOS Risk Criterion (RC): 3 Low Risk, 2 Moderate Risk, 1 High Risk Evaluation Criteria for an Emergent Technology < 30 = (PC*RC) < 40 <50 >50 Scalability CMOS Architecture Compatibility CMOS Compatibility Prof.to, P. 2Mazumder superior comparable Criteria: 3 with, 1 inferior to CMOS Risk Criteria: 3 Low Risk, 2 Moderate Risk, 1 High Risk Fall 2006 Performance Fall 2006 Performance RTD & QD Energy Efficiency Room Temperature Operation Prof. P. Mazumder Operational Reliability 10 3/10/2013 Evaluation Criteria for an Emergent Technology Scalability CMOS Architecture Compatibility Performance Molecular Spin FET CMOS Compatibility RTD & QD Energy Efficiency CNT Fall 2006 Fall 2006 Room Temperature Operation Operational Reliability Prof. P. Mazumder Prof. P. Mazumder SET Fall 2006 Prof. P. Mazumder Fall 2006 Prof. P. Mazumder 11 3/10/2013 Fall 2006 Prof. P. Mazumder Fall 2006 Prof. P. Mazumder Fall 2006 Prof. P. Mazumder Fall 2006 Prof. P. Mazumder 12 3/10/2013 State 0 State 1 Prof. P. Mazumder Fall 2006 Fall 2006 Prof. P. Mazumder Fall 2006 Prof. P. Mazumder Silicon Nanoelectronics — Nano-CMOS Silicon Story (nm) 10000 1.E+15 1015 DRAM 1.4 Times/Year Gate Length 800 500 350 250 180 100 64GB (2015) 130 100 70 50 1.E+12 1012 Neuron Number in Brain 35 25 18 Increasing Technology difficulty 10 1.E+13 1013 1.E+11 1011 1.E+10 1010 1.E+09 109 1.E+08 108 1.E+07 107 1.E+06 106 1 1989 Fall 2006 1990 1993 1996 1999 2002 2005 2008 2011 2014 2017 2020 2023 1.E+05 105 Transistor Number per chip 1000 1.E+14 1014 1TB1 TB (2023) (2023) 2026 Prof.year P. Mazumder Source: IEEE C&D Mag. 2001 13 3/10/2013 Silicon Nanoelectronics — Nano-CMOS CPU with Multimedia Capability 100b Number of transistors on a chip in thousands 10b 100-billion transistors Moore’s law prediction processors 1b 100,000 1-billion transistors 10,000 1,000 Pentium III Xeon 80386 80286 80486 100 4004 8086 10 Pentium III Pentium II Pentium Pro Pentium 8080 1 Fall 2006 '70 '75 '80 '85 '90 '00 '05 Prof. '95 P. Mazumder '10 Nanoelectronics and Gigascale Systems Lab. '15 ‘20 ‘25 ‘30 Fall 2006 Prof. P. Mazumder Fall 2006 Prof. P. Mazumder Courtesy: P. Wu Nanoarchitectures Fall 2006 Prof. P. Mazumder 14 3/10/2013 Fall 2006 Prof. P. Mazumder Prof. P. Mazumder Fall 2006 Evaluation Criteria for an Emergent Technology Scalability CMOS Architecture Compatibility Performance Molecular Spin FET CMOS Compatibility RTD & QD Energy Efficiency CNT Fall 2006 Prof. P. Mazumder Fall 2006 Room Temperature Operation Operational Reliability Prof. P. Mazumder SET 15 3/10/2013 Evaluation Criteria for an Emergent Technology Monochromatic Image Processor 1.0 R V(fm,fn)/I B Scalability CMOS Architecture Compatibility 0.5 Performance 0.0 0.5 0.4 0.1 0.3 0.2 fn Molecular Spin FET RTD & QD CMOS Compatibility Fall 2006 0.2 0.4 0.1 fm 0.5 V ( z m , z n ) Z-transform of a QD pair = Energy Efficiency I R12 2 1 cos 2 f m 2 1 cos 2 f n CNT Room Temperature Operation Operational Reliability Prof. P. Mazumder 0.3 Connecting Resistance Defines the Mutual Voltage between a pair of QD’s SET Fall 2006 Prof. P. Mazumder Nanoscale Nonlinear Circuit Theory Edge Detection by QDA Gray Binary Conversion 0 ns 1 ns 2 ns Vertical Line Detection (VLD) 0 ns Fall 2006 6 ns Prof. P. Mazumder 5 ns fabricated and tested 6 ns Image Processor is being under a NIRT project Fall 2006 Prof. P. Mazumder 16 3/10/2013 Fall 2006 Prof. P. Mazumder 17
© Copyright 2025 Paperzz