Photo-Activated Sludge System (PAS): A novel algal-bacterial biotreatment for nutrient rich wastewater PhD candidate: Angélica María Rada, MSc. Delft, April 2015 OUTLINE • Background and problem statement • Objectives • Experimental Setup • Results & discussion • Conclusions • Future works Background & problem statement CO2 Organic matter Light Bacterial Oxidation (OHO) NH3 Nitrification (AOO, NOO) NO3- Microalgal photosynthesis (PHO) Biomass Advantages: •High effluent quality •Low energy consumption •Small areal footprint •Technically easy to operate P O2 Energy intensive activated sludge process Low energy demanding algaebased natural processes 1. Exchange of carbon dioxide and oxygen. 3. Negative effect of the algae in the microbial growth. 4. Alterations of pH in the culture medium. 5. Exudates from the algae used as source of carbon to the bacteria. Photo Activated Sludge System Objectives Main Objective The main objective of the present research is to maximize the efficiency of the PhotoActivated Sludge System for the treatment of wastewater rich in nutrients, while achieving a valuable recovery of biomass. 1. Key kinetics parameters. Determination of the kinetics of the microalgae-bacteria 2. Optimal conditions of the key parameters (pH, SRT, HRT). consortia and the differences with the known kinetics of 3. Nutrient removal mechanisms. solely cultures of algae and bacteria. 4.Mathematical Model Experimental Setup Inoculums Starting Phase – Inoculation REACTOR 2 REACTOR 1 Medium: BG – 11 1. Volume = 4 L 2. N-NH4+/L = 35 mg/l 3. PO43- = 10 mg/L 4. Control of pH with buffer (pH 7.5) 5. Temperature 25℃ Irradiance =1000 µmol/m2/s 1. 2. 3. 4. 5. Scenedesmus quadricauda (10 ml) Chlorella sp (10 ml) Anabaena variabilis (10 ml) Chlorococcus sp (10 ml) Spirulina sp (10 ml) 1. Scenedesmus quadricauda 2. Chlorella sp 50 ml of Activated Sludge 3. Anabaena variabilis (Harnaschpolder Wastewater Treatment 4. Chlorococcus sp Plant) 5. Spirulina sp 6. Activated Sludge bacteria Flat Reactor Scenedesmus quadricauda (10 ml) Flat Panel 1 Chlorella sp (10 ml) Anabaena variabilis (10 ml) Chlorococcus sp (10 ml) Flat Panel 2 Spirulina sp (10 ml) REACTOR 3 Flat Panel 3 0.25x0.2x0.1 m for a total 1. working volume Chlorella sp (50of ml)5 L Flat Panel 4 Microbial communities Mixture of algae strains + enriched culture of nitrifiers Mixture of algae strains + Nitrification inhibitor Chlorella vulgaris + Nitrification inhibitor Activated Sludge bacteria Experimental Setup Operation Periods P 0 1 2 3 4 5 NH4-N concentration 12.5 ((NH4)2SO4) 27.4 ((NH4)2SO4) 407.4 ((NH4)2SO4) 258.4 ((NH4)2SO4) 271.8 (NH4Cl) 294.7 (NH4Cl) Operation scheme Batch SBR SBR SBR SBR SBR HRT 3 8 8 8 4 2 NH4-N loading rate Operation time (mg NH4-N /l/d) 4.1 3 days 3.4 5 days 50.9 7 days 32.3 11 days 67.9 18 days 147.3 131 days Operation Scheme Influent 1 (1L) Duration: 15 min Hour 12.15 pm Start effluent discharge (2L) Duration: 15 min Hour: 12.00 pm Influent 2 (1L) Duration: 15 min Hour 12.00 am Start settling Stirrers turn off Duration: 30 min Hour: 11.30 pm Results & Discussion - N compounds 1. Nitrogen compounds concentration 1.1 Nitrogen concentrations along the periods for R1: Microalgae-bacteria consortia Reactor 1 - Microalgae-bacteria consortia 475 P1 450 P2 P3 P4 P5a P5b 425 375 350 325 Increase of Alkalinity (171d) 300 275 250 225 200 175 150 125 100 75 50 25 EFF - NH4 EFF-NO2 EFF-NO3 INF 195 190 180 185 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 95 100 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 5 Day 10 0 0 N-compounds concentration (mg/L) 400 Results & Discussion - N compounds 1. Nitrogen compounds concentration 1.2 Nitrogen concentrations along the periods for R2: Microalgae consortia Reactor 2 - Microalgae consortia 475 P1 450 P2 P3 P4 P5a P5b 425 375 350 Increase of Alkalinity (171d) 325 300 275 250 225 200 ATTU addition (184d) 175 150 125 100 75 50 25 EFF - NH4 EFF-NO2 EFF-NO3 INF 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 95 100 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 5 Day 10 0 0 N-compounds concentration (mg/L) 400 Results & Discussion - N compounds 1. Nitrogen compounds concentration 1.3 Nitrogen concentrations along the periods for R: Cholerra Vulgaris Reactor 3 - Chlorella Vulgaris 475 P1 450 P2 P3 P4 P5a P5b 425 375 350 Increase of Alkalinity (171d) 325 300 275 250 225 200 175 150 125 100 75 ATTU addition (184d) 50 25 EFF - NH4 EFF-NO2 EFF-NO3 INF 195 190 185 180 170 175 165 160 155 150 145 140 135 130 125 120 115 110 105 95 100 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 5 Day 10 0 0 N-compounds concentration (mg/L) 400 Results & Discussion - N compounds 1. 2 Ammonium removal rate for microalgae and nitrifiers Ammonium removal rate - Reactor 2 3 Reactor 1 - Ammonium removal rate 140 P1 P1 P2 P3 P4 130 P5b Ammonium Removal algae Periods mgFSA-N/L/d R1 R2 R3 64.6 64.0 64.2 4 30.0 32.5 34.0 5a 41.9 40.1 47.6 5b 120 110 100 90 80 70 60 Ammonium Removal bacteria mgFSA-N/L/d Increase of R1 Alkalinity R2 R3 (171d) 0.84 --3.21 --32.14 --- Microalgae-Bacteria allows us to have higher ammonium conversion rates!!! 50 40 30 ATTU addition ATTU (184d) Increase of addition Alkalinity (171d)(184d) 20 10 Ammonium removal rate - algae Ammonium removal rate - nitrifiers 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 95 100 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 5 Day 10 0 0 Ammonium removal rate (mgNH 4-N/L/d) Ammonium removal rate (mgNH 4-N/L/d) P5a Results & Discussion - N compounds 1. 2 Suspended solids ReactorReactor Reactor 1 - Microalgae-bacteria Microalgae consortia consortia 32--Chlorella Vulgaris 5.5 P1P1 P4 P4P4 P2P2 P2 P3 P3 P3 P5a P5a P5b 5.0 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 TSS - R3 R1 R2 VSS - R3 R1 R2 165 160 155 150 140 145 135 130 125 120 115 110 105 95 100 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 5 Day 10 0.0 0 Solids concentrations (g/L) 4.5 Results & Discussion - N compounds 1. 2 Suspended solids ReactorReactor Reactor 1 - Microalgae-bacteria Microalgae consortia consortia 32--Chlorella Vulgaris 5.5 P1P1 P4 P4P4 P2P2 P2 P3 P3 P3 P5a P5a P5b Period 5.0 3 4 5a 5b 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 TSS - R3 R1 R2 VSS - R3 R1 R2 165 160 155 150 140 145 135 130 125 120 115 110 105 95 100 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 5 Day 10 0.0 0 Solids concentrations (g/L) 4.5 R2 R3 g/m2/d 22.75 13.50 20.06 36.33 g/m2/d 12.19 26.50 32.36 58.17 Results & Discussion - N compounds 3. Nitrogen removal rates and biomass growth rate of algae and Nitrifiers 3.1 Nitrogen removal rates and biomass growth rate of Nitrifiers Period Ammonium loading rate HRT 4 5a 5b mgFSA/L/d 67.9 149.7 142.8 1/d 4 2 2 Based on Rxbacteria substrate Rs bacteria µ µmax mgVSS/L/d mgFSA-N/L/d 1/d 1/d 0.07 0.84 1.94 1.99 0.55 3.21 0.94 0.95 28.34 32.14 0.19 0.19 Measured 2.0 Max specific growth rate of nitrifiers 1.5 y = 2.6538x + 1.0873 R² = 0.9997 2.5 1.0 0.5 0.0 1.5 -0.5 1.0 -1.5 -1.0 -2.0 0.5 -2.5 -3.0 0.0 0 10 20 30 Ammonium loading rate (mgFSA-N/L/d) 40 -3.5 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 Log (1/Rsb) -0.2 0.0 0.2 Log (µm/Y) µmax 2.0 Results & Discussion - N compounds 3. Nitrogen removal rates and biomass growth rate of algae and Nitrifiers 3.2 Nitrogen removal rates and biomass growth rate of algae Periods 3 4 5a 5b Periods 3 4 5a 5b Periods 3 4 5a 5b Ammonium loading rate mgFSA/L/d 32.3 67.9 149.7 142.8 Ammonium loading rate mgFSA/L/d 32.3 67.9 149.7 142.8 Ammonium loading rate mgFSA/L/d 32.3 67.9 149.7 142.8 Reactor 1 - ALGAE HRT 1/d 8 4 2 2 VSS Rxalgae gVSS/L mgVSS/L/d 1.6 1639.7 0.5 478.2 0.5 534.8 2.1 2085.0 Measured Rs algae mgFSA/L/d 29.5 64.6 30.0 41.9 Based on substrate µ µmax 1/d 1/d 0.19 0.19 1.47 1.47 0.61 0.61 0.22 0.22 Reactor 2 - ALGAE HRT 1/d 8 4 2 2 Measured Based on substrate Rs algae µ µmax gVSS/L mgVSS/L/d mgFSA-N/L/d 1/d 1/d 1.8 227.5 29.7 0.18 0.18 0.5 135.0 64.0 1.28 1.28 0.4 178.2 32.5 0.99 0.99 0.7 357.2 40.1 0.61 0.61 VSS Rxalgae Reactor 3 - ALGAE HRT 1/d 8 4 2 2 Measured Based on substrate Rs algae µ µmax gVSS/L mgVSS/L/d mgFSA-N/L/d 1/d 1/d 0.9 109.4 29.8 0.37 0.37 0.5 131.5 64.2 1.32 1.32 0.3 161.4 34.0 1.14 1.14 0.8 391.7 47.6 0.66 0.66 VSS Rxalgae Results & Discussion - N compounds 3. Nitrogen removal rates and biomass growth rate of algae and Nitrifiers 3.2 Nitrogen removal rates and biomass growth rate of algae 1.4 1.2 R1 0.8 R2 0.6 R3 0.4 0.2 0.0 0 25 50 75 100 125 Ammonium loading rate (mgFSA-N/L/d) Ammonium conversion rate (mg mgFSA-N/L/d) µmax 1.0 150 175 Algae ammonium converstion rate (mgFSA-N/L/d) Specific growth rate - algae 1.6 70 Algae ammonium conversion rate per biomass concentration Rsalgae R1 Rsalgae R2 Rsalgae R3 60 50 40 30 20 10 0 0 1000 2000 Net ammonium conversion rate per biomass concentration 80 70 60 Rs R1 50 40 30 20 10 0 0 3000 Biomass concentration (mgVSS/L) 1000 2000 3000 Biomass concentration (mgVSS/L) 4000 4000 Conclusions • Coupling bacteria with algae process increase the efficiency of ammonium removal without external aeration • Ammonium removal rates of 70 mg/L/d by algae and bacteria at HRT of days • Higher ammonium removal at higher solid concentrations (3 g/L) • Reduction in the specific growth rate of alga and nitrifiers when in a microalge-bacteria system • The algae biomass has presented tolerance at high concentration of NO2-N Challenges!!! 1. More accurate and precise determination of the kinetic parameters 2. More accurate determination of algae biomass and bacterial biomass 3. Modelling of the Microalgae –bacteria system THANKS FOR YOUR ATTENTION! 1
© Copyright 2026 Paperzz