Application of Nanomaterials for Thermal Dissipation S. Flórez, I. Garmendia, H. Vallejo, C. Jiménez, E. Alberdi, R. Rodríguez 6th ESA Round Table on Micro & Nano Technologies for Space Applications ESA/ESTEC, Noordwijk The Netherlands 11 October 2007 6th ESA Round table on micro&nanotechnologies for Space applications. 8-12 October 2007 Outline •Introduction •Objective •Modelling. FEM analysis •Experimental •Influence of manufacturing process on final properties •Conclusions October of 2007 2 de 22 Application of Nanomaterials for Thermal Dissipation 6th ESA Round table on micro&nanotechnologies for Space applications. 8-12 October 2007 Introduction • High temperatures in electronic components • Heat evacuated through conduction towards radiator(s) • Good conductivity needed all the way. Adhesive’s conductivity is critical The aim of the THERDISS project (supported by ESA) is to conduct research in nanocomposites to be used to dope adhesives for space conditions. Thus, it is expected that the finally selected nanocomposite can multiply at least by a factor of 3 the thermal conductivity of a standard epoxy solution. Objective ELECTRONIC COMPONENT ADHESIVE K adhesive = 0 ,21 W mK NANOMATERIALS ELECTRONIC BOARD October of 2007 q 3 de 22 K objective = 6 ÷ 10 W mK Application of Nanomaterials for Thermal Dissipation 6th ESA Round table on micro&nanotechnologies for Space applications. 8-12 October 2007 Methodology • MODELLING How much nanomaterial is needed to reach Kobjective • EXPERIMENTAL Real mix of nanomaterials and adhesive. Measurements. 9Commercial non conductive Hysol EA epoxy adhesive. K=0,2W/mk •Commercial conductive epoxy adhesive. K=2W/mk October of 2007 4 de 22 Application of Nanomaterials for Thermal Dissipation 6th ESA Round table on micro&nanotechnologies for Space applications. 8-12 October 2007 Modelling. Finite Element Methods 1. Mesh the model with commercial software ¾ Take into account the nano-material length 2. Export the mesh topology to an ASCII file 3. Add randomly the nanoparticles to the original mesh trough THERDISS in house developed software 4. ¾ According to the weight percentage ¾ According to the properties of the nanomaterials Establish the boundary conditions trough THERDISS ¾ 5. Solve the case with commercial software ¾ 6. Surface temperatures The program calculates the heat flow q Calculate the equivalent thermal conductivity by, q = K eq ⋅ October of 2007 A q d ⋅ ΔT → K eq = ⋅ d ΔT A 5 de 22 Application of Nanomaterials for Thermal Dissipation 6th ESA Round table on micro&nanotechnologies for Space applications. 8-12 October 2007 Materials NANOMATERIALS CNF TYPE Ø (m) CNF 1.00E-07 MWNT 2.00E-08 SWNT 1.20E-09 BUCKYPAPER 1.50E-08 October of 2007 MWNT L (m) SWNT BUCKYPAPER ADHESIVE K (W/mK) ρ (kg/m3) Th. (m) 1200 2100 - MATERIAL K (W/mK) ρ (kg/m3) 3000 1350 - HYSOL EA 9396 0.21 1150 1350 - 1.00E-04 5.00E-05 4.00E-05 5.00E-07 4.00E-05 1750 – 5800 5.00E-07 3775 (mean) 2.00E-05 5.00E-06 6 de 22 1200 500 1.00E-4 5.00E-5 Application of Nanomaterials for Thermal Dissipation 6th ESA Round table on micro&nanotechnologies for Space applications. 8-12 October 2007 Finite Element Models FEM 01 and FEM 02 FEM 01 FEM 02 NANOMATERIAL CNF DIAMETER (m) 100.E-9 LENGTH (m) 100.E-6 50.E-6 0.1 ÷ 50 W. PERCENTAGE (%) SCALED MODEL NO SCALE - FEM DIMENSIONS (mm) 2 x 2 x 0.1 FEM 03 and FEM 04 FEM 03 FEM 04 NANOMATERIAL MWNT DIAMETER (m) 20.E-9 LENGTH (m) W. PERCENTAGE (%) SCALED MODEL SCALE FEM DIMENSIONS (mm) October of 2007 500.E-9 40.E-6 0.1 ÷ 50 NO YES - 1000 / 1 2 x 2 x 0.1 20 x 20 x 100 7 de 22 Application of Nanomaterials for Thermal Dissipation 6th ESA Round table on micro&nanotechnologies for Space applications. 8-12 October 2007 Finite Element Models FEM 05 and FEM 06 FEM 05 FEM 06 NANOMATERIAL SWNT DIAMETER (m) 1.2.E-9 LENGTH (m) 40.E-6 W. PERCENTAGE (%) 0.1 ÷ 50 NO YES - 1000 / 1 2 x 2 x 0.1 20 x 20 x 100 SCALED MODEL SCALE FEM DIMENSIONS (mm) 500.E-9 FEM 07 and FEM 08 FEM 07 NANOMATERIAL BP DIAMETER (m) LENGTH (m) 15.E-9 20.E-6 W. PERCENTAGE (%) SCALED MODEL SCALE FEM DIMENSIONS (mm) October of 2007 FEM 08 5.E-6 19.79 ÷ 36.33 NO YES - 1000 / 1 2 x 2 x 0.1 200x200x100 8 de 22 Application of Nanomaterials for Thermal Dissipation 6th ESA Round table on micro&nanotechnologies for Space applications. 8-12 October 2007 Results for fibrous shaped nanomaterials FEM 01 FEM 02 FEM 03 FEM 04 FEM 05 FEM 06 15 14 13 THERMAL CONDUCTIVITY (W/mK) 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0,25 0,5 0,75 1 1,25 1,5 1,75 2 2,25 2,5 2,75 3 3,25 3,5 3,75 4 4,25 4,5 4,75 5 WEIGHT PERCENTAGE (%) October of 2007 9 de 22 Application of Nanomaterials for Thermal Dissipation 6th ESA Round table on micro&nanotechnologies for Space applications. 8-12 October 2007 Experimental October of 2007 10 de 22 Application of Nanomaterials for Thermal Dissipation 6th ESA Round table on micro&nanotechnologies for Space applications. 8-12 October 2007 Nanomaterials CNF Dispersion SWNT < MWNT < CNF Thermal properties ≈ ≈ ≈ Prize SWNT> MWNT> CNF Simulation: Ideal conditions K adhesive = 0 ,21 October of 2007 W mK 11 de 22 + 2.5 wt% CNF K objective = 6 ÷ 10 W mK Application of Nanomaterials for Thermal Dissipation 6th ESA Round table on micro&nanotechnologies for Space applications. 8-12 October 2007 Hardener mixing Epoxy resin Nanoparticles Epoxy resin Filler adition technology set up casting defoaming Resin specimen Hardener DISPERSING Curing Mixing under vaccum casting defoaming Curing NANOADHESIVE Three roll mill October of 2007 12 de 22 Application of Nanomaterials for Thermal Dissipation 6th ESA Round table on micro&nanotechnologies for Space applications. 8-12 October 2007 Work Methodology Manual Premix: CNF (2,5wt%) + Epoxy Part A DEGBA Dispersion device: Three roll mill Control parameters: Gap and residence time Degassing Hardener Part B H2N N N N NH2 Aliphatic Amine Curing NANOADHESIVE October of 2007 13 de 22 Application of Nanomaterials for Thermal Dissipation 6th ESA Round table on micro&nanotechnologies for Space applications. 8-12 October 2007 Nanoadhesive Morphology CNF distribution into the polymeric matrix October of 2007 14 de 22 Application of Nanomaterials for Thermal Dissipation 6th ESA Round table on micro&nanotechnologies for Space applications. 8-12 October 2007 Thermal Conductivity Results Guarded hot plate method Termocouple method T2 Cu substrates t Nanoadhesive Hot plate- T1 9 Conductivity 9 Mechanical test Mechanical assembly Results. Guarded Hot plate K adhesive = 0 ,21 W mK K nanoadhesive = 0,5 October of 2007 15 de 22 W mK ≠ K objective = 6 ÷ 10 W mK Application of Nanomaterials for Thermal Dissipation 6th ESA Round table on micro&nanotechnologies for Space applications. 8-12 October 2007 INFLUENCE OF LACK OF DISPERSION, AIR PRESENCE AND NO CONTACT October of 2007 16 de 22 Application of Nanomaterials for Thermal Dissipation 6th ESA Round table on micro&nanotechnologies for Space applications. 8-12 October 2007 Influence of air presence on the thermal conductivity K (W/mK) MODEL FEM 02 FEM 04 WITHOUT AIR 5,15 4,75 1% AIR 5,10 - - 4,24 10 % AIR October of 2007 17 de 22 Application of Nanomaterials for Thermal Dissipation 6th ESA Round table on micro&nanotechnologies for Space applications. 8-12 October 2007 Influence of lack of dispersion on the thermal conductivity Nedge Nnano K (W/mK) FEM 02 FEM 04 5,15 4,75 1 5,5 FEM 02 5 FEM 04 2 4,93 4,02 3 4,66 3,29 4 4,39 2,66 5 4,09 2,12 7,5 3,59 1,20 10 3,13 0,77 15 2,61 0,47 20 2,19 0,37 30 1,48 0,30 40 1,14 0,27 50 0,98 0,26 60 0,82 0,25 75 0,71 0,24 90 0,59 0,23 100 0,52 0,23 October of 2007 Thermal Conductivity (W/mK) 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 0 10 20 30 40 50 60 70 80 90 100 Nedge/Nnano NARIST / NNANO 18 de 22 Application of Nanomaterials for Thermal Dissipation 6th ESA Round table on micro&nanotechnologies for Space applications. 8-12 October 2007 Influence of no contact on the thermal conductivity NO CONTACT BETWEEN THE NANOELEMENTS AND THE ELECTRONIC COMPONENT Adhesive Doped Adhesive Adhesive d (m) K (W/mK) 5,5 FEM 02 5 FEM 02 FEM 04 FEM 04 Thermal Conductivity (W/mK) 4,5 0,00E+00 5,15 4,75 1,00E-06 3,50 3,31 2,00E-06 2,65 2,55 3,00E-06 2,14 2,07 4,00E-06 1,79 1,74 5,00E-06 1,54 1,50 6,00E-06 1,35 1,32 7,00E-06 1,20 1,18 0,5 8,00E-06 1,08 1,07 0 9,00E-06 0,98 0,97 10,0E-06 0,90 0,89 October of 2007 4 3,5 3 2,5 2 1,5 1,0E-05 9,5E-06 9,0E-06 8,5E-06 8,0E-06 7,5E-06 7,0E-06 6,5E-06 6,0E-06 5,5E-06 5,0E-06 4,5E-06 4,0E-06 3,5E-06 3,0E-06 2,5E-06 2,0E-06 1,5E-06 1,0E-06 5,0E-07 0,0E+00 1 No Contact Length (m) 19 de 22 Application of Nanomaterials for Thermal Dissipation 6th ESA Round table on micro&nanotechnologies for Space applications. 8-12 October 2007 Influence of the no contact on the thermal conductivity NO CONTACT BETWEEN THE NANOELEMENTS d 5,5 5 FEM 02 d d Thermal Conductivity (W/mK) 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 0 50 d October of 2007 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 No Contact Length (nm) 20 de 22 Application of Nanomaterials for Thermal Dissipation 6th ESA Round table on micro&nanotechnologies for Space applications. 8-12 October 2007 Strategies to improve thermal conductivity. Synergic effect Boron nitride + fibrous nanomaterials (CNF) K Boron nitride = 600 W mK EPOXY+BORON NITRIDE October of 2007 21 de 22 EPOXY+CNF + BN Application of Nanomaterials for Thermal Dissipation 6th ESA Round table on micro&nanotechnologies for Space applications. 8-12 October 2007 Conclusions 1. A methodology has been establish to predict K for doped adhesives and a FEM program has been written. 2. In the fibrous shaped nanomaterials (CNF, MWNT and SWNT), the efficiency depends mainly on the orientation of the nanoparticles, as well as the thermal conductivity of the nanomaterials. 3. Good CNF dispersion into the polymeric matrix was achieved using the three roller mill device. 4. Thermal conductivity increases to 0.5 W/mk using 2.5 wt% of CNF. This result is in concordance with the simulation in which the main condition is that no contact between the nanoelements takes place. 5. Adding boron nitride the contact among conductive elements was increased (SEM images), therefore the thermal conductivity could be increased. 6. New and promising results are being obtained that assure succesful final for the project October of 2007 22 de 22 Application of Nanomaterials for Thermal Dissipation 6th ESA Round table on micro&nanotechnologies for Space applications. 8-12 October 2007 Thanks for your attention! October of 2007 23 de 22 Application of Nanomaterials for Thermal Dissipation
© Copyright 2026 Paperzz