2017-5-31, KITS, Beijing Numerical study of electron correlation effects in spintronic materials Bo Gu (顾波) Advanced Science Research Center (ASRC) Japan Atomic Energy Agency (JAEA) 1 Self-introduction Dec. 1977 born in Hubei, China Education: 1996.9 – 2000.7 Wuhan University, Bachelor 2000.9 - 2003.7 Peking University, M.S. (Supervisor: 苏肇冰, Co-supervisors: 向涛, 王孝群,覃绍京) 2004.2 - 2007.1 Graduate University of Chinese Academy of Sciences, Ph.D. ( Supervisor: 苏刚) Employment: 2007.5 – 2010.3 2010.4 – 2012.3 2012.4 – 2016.6 2016.7 – now Tohoku University, Japan, Post-doc (Supervisor: Sadamichi Maekawa) Japan Atomic Energy Agency, Post-doc (Supervisor: Sadamichi Maekawa) Japan Atomic Energy Agency, Scientist (Permanent Staff) Japan Atomic Energy Agency, Senior Scientist (Permanent Staff) 2 Outline 1. Introduction on diluted magnetic semiconductor (DMS) 2. DMS with wide band gap 3. DMS with narrow band gap I am sorry to skip the part of spin Hall effect due to time limit. I am happy to answer questions on spin Hall effect. 3 Spintronics charge (e) Conventional electronic devices electron spin (μB) Spintronic devices Advantage: Non-volatility (data are retained with power off) Low electric power consumption etc… 4 Diluted magnetic semiconductors (DMS) e.g. GaAs Nonmagnetic semiconductors (charge) e.g. (Ga,Mn)As Diluted magnetic semiconductors (charge + spin) Classic DMS (Ga,Mn)As: (1) Curie Tc ~ 200 K. (2) p-type (hole) (Ga3+ Mn2+) Challenges: (1) High Tc > Room Temperature (2) p-type (hole) & n-type (electron) (e.g. spin p-n junction) 5 A picture of ferromagnetism (FM) in DMS Bulut PRB 76, 045220 (2007); Tomoda Physica B 404, 1159 (2009) Host band gap △g = 2 eV IBS: impurity bound state (split-off state) ~ 0.1 eV Symmetric model at μ = △g/2 μ Quantum Monte Carlo (QMC) method Chemical potential μ = - 6.0 eV (metallic) RKKY-type (Ruderman-Kittel-Kasuya-Yoshida) impurity-impurity impurity-host β=1/T impurity-impurity distance impurity-host distance 6 Chemical potential μ = 0.1 eV (semiconductor) long-range FM IBS: impurity bound state μ impurity-host impurity-impurity Ferromagnetic β=1/T Antiferromagnetic impurity-impurity distance Carrier-mediated ferromagnetism ! impurity-host distance Impurity Host IBS 7 Impurity-Impurity IBS: impurity bound state ~ 0.1 eV β=1/T IBS Chemical potential μ (eV) μ~ Condition for FM Bulut PRB 76, 045220 (2007) Hartree-Fock approximation Spatial distribution of spin of host Impurity IBS Host effective mass of host energy level of IBS M. Ichimura et al, Proceedings of ISQM-Tokyo 2005, p.183-186; cond-mat/0701736. 8 A picture of p-type ferromagnetism (FM) in DMS materials FM in p-type DMS VB μ p-type μ Strong p-d mixing in VB IBS near VB p-type: μ ~ Weak s-d mixing in CB no IBS near CB n-type: μ >> CB n-type μ FM No FM IBS: impurity bound state (split-off state) The picture for (Ga,Mn)As, (Zn,Mn)O, Mg(O,N), Li(Zn,Mn)P wide band gap 9 DMS: Semiconductor host + Magnetic impurity Carriers (electrons, holes) Localized moment VB: p-orbital; CB: s-orbital Band structure Ferromagnetism Electron correlations Density functional theory (DFT) Advantage of QMC Quantum Monte Carlo (QMC) 1. Treat electrons correlations correctly. 2. Not rely on separation between spin and charge fluctuations. 10 Our method for DMS Anderson impurity model: Host band Mixing Impurity level Density functional theory (DFT) Coulomb correlations of impurity Quantum Monte Carlo (QMC) with Hirsch-Fye algorithm DFT+QMC: Electron Correlations; Spin and Charge Fluctuations Chemical potential μ: a free parameter, model p- or n-type carriers. Occupation number of impurity Magnetic correlations between impurities 11 Outline 1. Introduction on diluted magnetic semiconductor (DMS) 2. DMS with wide band gap 3. DMS with narrow band gap 12 (Local moment)2 Case 1: (Zn,Mn)O & Impurity bound state (IBS) wurtzite zincblende rocksalt IBS IBS zincblend: ~ 0.1 eV wurtzite: ~ 0.2 eV (Shallow IBS) rocksalt: ~ 1.6 eV (Deep IBS) Band gap △g = 3.45 eV Chemical potential μ (eV) Gu, Bulut, Maeawa, J. Appl. Phys. 104, 103906 (2008). μ 13 Ferromagnetic (FM) correlation in (Zn,Mn)O ~0.2 eV FM in p-type DMS VB CB ~0.1 eV p-type μ μ~ Condition for FM ~1.6 eV No FM (Deep IBS) Hartree-Fock result: Mn-Mn distance (alattice) Gu, Bulut, Maeawa, J. Appl. Phys. 104, 103906 (2008). 14 A. Many experiments declare high-temperature ferromagnetism in p-type (Zn,Mn)O M. Ivill, et al., J. Appl. Phys. 97, 053904 (2005) K. R. Kittilstved, et al., Nat. Mater. 5, 291 (2006) J. R. Neal, et al., PRL 96, 197208 (2006) B. Debate on experiments Nature of the experimentally observed ferromagnetic signals K. Ando, Science 312, 1883 (2006) Unexpected ferromagnetic materials (cluster etc.) Intrinsic (Carrier-mediated) ferromagnetism Our message on (Zn,Mn)O 1. It is possible to have intrinsic ferromagnetism in (Zn,Mn)O. 2. We predict that zincblende structure (stable in thin film) is better than wurtzite structure (most common phase) in terms of FM. Gu, Bulut, Maeawa, J. Appl. Phys. 104, 103906 (2008). Case 2: New generation 111-type DMS (Ga3+, Mn2+)As 111-type Li1+x(Zn2+, Mn2+)As Li1+x(Zn2+, Mn2+)P Hole & Spin Hole/Electron Spin Independently dope charge and spin ! Experiments on 111-type DMS Li(Zn,Mn)As Tc ~ 50 K, P-type, Band gap = 1.61 eV Z. Deng et al, Nat. Commun. 2, 422 (2011) Li(Zn,Mn)P Tc ~ 36 K, P-type, Band gap ~ 2 eV Z. Deng et al, PRB 88, 081203(R) (2013). 16 Ferromagnetic (FM) correlations in Li(Zn,Mn)P Impurity-Impurity FM coupling Occupation number (Mn) Impurity bound state (IBS). ~ 0 eV IBS Chemical potential μ (eV) Mn-Mn distance (alattice) Reasonable p-type μ FM in p-type DMS VB μ CB 17 p-type μ How to obtain n-type DMS ? DMS with wide band gap IBS: impurity bound state FM in p-type DMS VB CB μ p-type μ n-type μ Our idea: DMS with narrow band gap FM in p & n-type DMS VB μ p-type μ CB n-type μ 18 Outline 1. Introduction on diluted magnetic semiconductor (DMS) 2. DMS with wide band gap 3. DMS with narrow band gap 19 Good materials to check our idea: 122-type DMS: Mn-doped BaZn2As2 FM in p-type (hole) (Ba2+,K+)(Zn,Mn)2As2 Tc ~ 230 K K. Zhao et al, Nat. Commun. (2013) ; Chin. Sci. Bull. (2014). FM in n-type (electron) Ba(Zn,Mn,Co)2As2 Tc ~ 80 K H. Man et al, arXiv.1403.4019 (2014) BaZn2As2 : Gap = 0.2 eV Mn-doped BaZn2As2 and BaZn2Sb2 ! BaZn2As2 (I4/mmm) Gap = 0.2 eV BaZn2Sb2 (Pnma) Gap = 0.2 eV 20 Density of state (Mn-3d) Case 1: Ba(Zn,Mn)2As2 VB CB IBS IBS IBS Chemical potential μ (eV) ARPES: H. Suzuki et al, PRB 92, 235120 (2015). p-type μ n-type μ 21 Ferromagnetic (FM) correlation in Ba(Zn,Mn)2As2 P-type Long-range FM (larger <M1M2>) Tc (exp) ~ 230 K N-type Long-range FM (smaller <M1M2>) Tc (exp) ~ 80 K Mn-Mn distance (Å) Gu and Maekawa, PRB 94, 155202 (2016) 22 A simple estimation of exchange coupling J12 by <M1M2> Ferromagnetic Antiferromagnetic Gu, Ziman, Maekawa, PRB 79, 024407 (2009) 23 Case 2: Ferromagnetic (FM) correlation in Ba(Zn,Mn)2Sb2 P-type Long-range FM Mn-Mn distance (Å) p-type FM <M1M2> (2nd n.n.) FM range Tc Mn in BaZn2As2 ~ 0.08 ~6Å 230 K (Zhao, 2014) Mn in BaZn2Sb2 ~ 0.14 ~ 10 Å > 230 K (expected) Gu and Maekawa, PRB 94, 155202 (2016) 24 Density of state (3d) Case 3: Cr vs. Mn impurities in BaZn2As2 VB CB Impurity bound state (IBS) Cr: bottom of CB IBS(Mn) IBS(Cr) Mn: top of VB N-type FM: Cr : more promising Chemical potential μ (eV) Impurity level : Ed (Mn2+: d5) < Ed (Cr2+: d4) < EF IBS(Mn) < IBS (Cr) AIP Advances 7, 055805 (2017). 25 Summary of diluted magnetic semiconductor (DMS) 1. Found ferromagnetic (FM) correlations in some DMSs with wide band gap. Clarify the controversial experiments. FM in p-type DMS VB CB (Zn,Mn)O, Mg(O,N) Contributed to a new promising direction Li(Zn,Mn)As, Li(Zn,Mn)P IBS: impurity bound state p-type μ 2. Proposed a way to realize p- and ntype DMS: Narrow band gap. Consistent with exp. in Ba(Zn,Mn)2As2 n-type μ FM in p & n-type DMS VB CB Predict p- and n-type FM in Ba(Zn,Cr)2As2 Predict high Tc (> 230K) in Ba(Zn,Mn)2Sb2 p-type μ n-type μ 26 Outlook & Future Conduction electrons Band structure Density functional theory (DFT) Localized electrons Electron correlations Quantum Monte Carlo (QMC) DFT + QMC method: Useful in a wide range of materials ! 27 Acknowledgments (Diluted Magnetic Semiconductor) Theories: S. Maekawa (ASRC, JAEA) N. Bulut (Izmir Inst. Tec.): QMC, (Zn,Mn)O T. Ziman (Inst. Laue Langevin): Mg(O,N) J. Ohe (Toho U): (Ga,Mn)As Experiments: F. L. Ning(宁凡龙)(Zhejiang U)(浙大): n-type Ba(Zn,Mn)2As2 C. Q. Jin (靳常青)(IOP, CAS)(物理所): Li(Zn,Mn)As, Ba(Zn,Mn)2As2 A. Fujimori (U Tokyo): ARPES Y. J. Uemura (Columbia U): muSR, organization 28 Thank you very much ! 29
© Copyright 2026 Paperzz