Design Study Euron b-beams: R&D Challenges in FP7 P. Delahaye for b-beams FP6 baseline scenario Design Study 2.9 1018 n/year 18Ne: 1.1 1018n/year 6He: TOP – DOWN APPROACH 6He: 2. 1013 /s 18Ne: 2. 1013/s A year of exploitation: 107 s Challenges • Production (see also M. Hass) • Ionization (T. Thuiller) • Accelerator chain adaptation (A. Lachaize, A. Chancé) • Loss management (CERN, GSI, CEA see E. Wildner) Production • FP6: pushing the limits of standard production techniques 6He, 18Ne produced at ISOLDE, GANIL, Dubna, LLN, ISAC… •Max: a few 108 Today no dedicated high intensity facilities Production • 6He 9Be(n,a) Converter technology: (J. Nolen, NPA 701 (2002) 312c) T. Stora et al, EURISOL-TN03-25-2006-0003 • • • CEA Saclay Optimized Geometry N Thollieres et al. EURISOL-TN03-25-2006-0004 Preferred to direct irradiation (heat transfer and efficient cooling allows higher power) 6He production rate is ~2x1013 ions/s (dc) for ~200 kW on target Use of a 4MW target is a priori possible Production • 18Ne – 2GeV p on 100kW MgO target: factor 24 missing – Low energy 3He beam on LiF target and on 16O gaseous target, tests at LLN – Multiple targets and cooling and accumulating target rings FC 60 cm diameter target MgO 2MW 3He beam (14.8MeV, 130mA) 1013 18Ne/sp beam Ge detector M. Loiselet and S. Mitrofanov, LLN Production • FP7: studying a novel idea Beam cooling with ionisation losses – C. Rubbia, A Ferrari, Y. Kadi and V. Vlachoudis in NIM A, 568 (2006) 475 7Li 6Li Gas inlet Gas cell 7Li(d,p)8Li 6Li(3He,n)8B ISOL or IGISOL extraction M. Lindroos et al, NIC-IX proceedings BEAM Extraction See also: Development of FFAG accelerators and their applications for intense secondary particle production, Y. Mori, NIM A562(2006)591 Production • Inverse kinematics at Louvain La Neuve Thierry Delbar, LLN Production Courtesy Thierry Delbar, LLN Production and Ionization • Collection and transfer to the ion source – Li: surface ionization easy • 1+ n+ (2+,3+) method – Quick transfer, separation possible and even desired – But: injection of light masses into ECR charge breeder difficult – presently <~1% efficiency • 0 n+ method difficult (no gas molecules easy to form) – B: not produced at ISOL facilities yet • 0 n+ method – 2349K as melting point, 4200K as boiling point – Transfer as molecule (for instance BF3 or BCl3) • 1+ n+ method with the IGISOL technique – But what space charge limit? Loss management • Decay losses and acceleration losses – RCS: A. Lachaize, S. Trovati – D.R.: E. Wildner, A. Chancé • Collimation in the decay ring – Momentum collimation (P. Delahaye, E. Wildner, S. Hancock) Bunch stacking • S. Hancock and M. Benedikt, NIM A 550 (2005) 1–5 Distribution of the scraped ions S. Hancock Gain: one order of magnitude using the stacking process Momentum collimation during the bunch compression Momentum collimation 50% of 1013/s 75% of 4.3 1012/s 18Ne 6He Momentum collimation Momentum collimation A. Fabich, EURISOL town meeting 2007 Arc Arcs Arc Arc Straight sections injection merging merging 1.6MW in 0.3s p-collimation 2.8MW in 0.3s p-collimation injection Straight section Collimation of « heavy » ions 18Ne pencil beam impinging on a 12C jaw at grazing angles Calculations with FLUKA z A,Z 18Ne q f y Graphite jaw x "FLUKA: a multi-particle transport code", A. Fasso`, A. Ferrari, J. Ranft, and P.R. Sala, CERN-2005-10 (2005), INFN/TC_05/11, SLAC-R-773 "The physics models of FLUKA: status and recent developments", A. Fasso`, A. Ferrari, S. Roesler, P.R. Sala, G. Battistoni, F. Cerutti, E. Gadioli, M.V. Garzelli, F. Ballarini, A. Ottolenghi, A. Empl and J. Ranft, Computing in High Energy and Nuclear Physics 2003 Conference (CHEP2003), La Jolla, CA, USA, March 24-28, 2003, (paper MOMT005), eConf C0303241 (2003), arXiv:hepph/0306267 Primary collimator 18Ne 5.104 incident 18Ne10+ 0.1mrad A,Z distribution A: Z 10 20 6 20 18 18 10 5 3 10 16 16 14 p 10 4 14 12 12 10 10 3 8 8 10 6 4 10 2 6 10 10 4 2 2 0 02 0 02 10 46 81 01 2 1 10 10 +-5% 5 81 The whole range between A=2 and A=18! 3 6 46 10 10 2 10 10 01 2 Br/Br0 1 4 3 10 2 3 10 10 2 10 10 1 2 0 0.5 1 10 1 1 -0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004 (COSZ) -0.004 -0.002 0 0.002 0.004 COSY Q (rad) f (rad) Angles peaked towards the forward direction! 1.5 2 2.5 ACCSIM - FLUKA studies Arbitrary large emittance: +-10mrad, Br=Br0+-20% ACCSIM F. Jones, TRIUMF Long range of secondary halo particles!! First dipole 600m from the primary collimator Coupling FLUKA and ACCSIM is necessary Conclusions • New candidates for beta-decaying particles – Triggers new interesting challenges • Production ring • Release from targets! • Ionization in ECR source! • Among the few the solutions proposed (including 6He and 18Ne) some look very attractive • Decay losses more or less under control • Collimation study will require dedicated efforts – High power deposition – Long range of secondary halo of particles – FLUKA - ACCSIM coupling
© Copyright 2026 Paperzz