Light management in nanostructured solar cells Albert Polman Center for Nanophotonics FOM-Institute AMOLF Amsterdam, The Netherlands Collaborators Piero Spinelli Jorik van de Groep Claire van Lare Vivian Ferry Frank Lenzmann Wim Soppe ECN AMOLF UU Ruud Schropp Philips Marc Verschuuren CALTECH Vivian Ferry Harry Atwater Outline 4. Solving Voc < Eg 1. Light coupling 2. Light trapping 3. Current collection 5. Towards 70% efficiency The scattering solar cell • Integrate nanoscatterers in the solar cell • Couple incident light to in-plane waveguide modes or localized modes Nature Mater. 9, 205 (2010) Light scattering from nanoparticles Large scattering cross section Strong forward scattering 4% air (n=1.0) Si (n=3.5) 96% Light scattering from nanoparticles Large scattering cross section All light captured Ag nanoparticles; scattering vs. Ohmic losses Albedo → 1 for D > 150 nm Albedo Ag particle in air 50 nm Absorption ~ r3 Scattering ~ r6 Ag For Ag particles >150 nm nearly all light is scattered For 50 nm particles 50% of the light is absorbed in the metal Substrate Conformal Imprint Lithography PDMS Stamp Thin glass PDMS stamp (6”) on 200 µm AF-45 glass 1 µm Full-wafer soft nano-imprint • Flexible rubber on thin glass • Conform to substrate bow and roughness • No stamp damage due to particles Marc Verschuuren PhD thesis, Utrecht University (2010) Total reflectivity (specular+diffuse) Experimental data Piero Spinelli Nano Lett. 11, 1760 (2011) Ag nanoparticle coated thin-film a-Si cells 10% enhanced photocurrent 350 nm i-a-Si:H 120 nm ZnO, 80 nm ITO Cell area: 0.13 cm2 Ag particles: pitch 500 nm height 120 nm diameter 240 nm Claire van Lare, Wim Soppe Transparent resonant conductive plasmonic networks 2 µm Ag wire network fabricated with e-beam lithography width: 45-110 nm height: 60 nm Jorik van de Groep, Piero Spinelli Optical transmission measurements Metal-insulator-metal plasmons Localized plasmons Surface plasmons Jorik van de Groep, Piero Spinelli Optical transmission measurements ITO: Pitch: w=45 nm Thin wire networks are better than 80 nm ITO Jorik van de Groep, Piero Spinelli Electrical resistance measurements w=45 nm • Four-Point-Probe • Ohmic behavior Jorik van de Groep, Piero Spinelli Tradeoff between transmission and resistance • Dilute network better than ITO • Optimum for smallest w and small pitch Jorik van de Groep, Piero Spinelli Combining light trapping and current collection Jorik van de Groep, Piero Spinelli Metallic vs. dielectric scatterers 1 1 E2 2 E2 2 Qscat Cscat = C geom ε − εm • Metal NP: plasmonic resonance α = 4πε 0 R ε + 2ε m • Dielectric NP: Mie (geometrical) resonance 3 Piero Spinelli Si surface Mie scatterers sphere cylinder In cylindrical particles light leaks into the substrate and resonance broadens Nature Comm. 3, 692 (2010) Si nm 300 Light incoupling using Si nanoparticle array Weakly coupled Mie scatterers Near-perfect anti-reflection coating! 5 4 200 3 100 2 0 1 -200-100 0 100 200 nm 0 Si3N4 Si Si radius = 125 nm height = 150 nm pitch = 450 nm Si3N4 thickness = 45 nm Piero Spinelli Nature Comm. 3, 692 (2012) Black silicon using leaky Mie resonances Average reflectivity: 1.3% Si3N4 Si Si Piero Spinelli Nature Comm. 3, 692 (2012) The scattering solar cell • Integrate nanoscatterers in the solar cell • Couple incident light to in-plane waveguide modes or localized modes Nature Mater. 9, 205 (2010) Back contact nanopatterns on ultrathin a-Si:H solar cells ITO a-Si:H ZnO:Al 500 nm Ag sol-gel 90-160 nm thick a-Si:H cells Vivian Ferry, Claire van Lare Nano Lett. 11, 4239 (2011) Ultra-thin Si solar cell: 90 nm i–layer light enhanced red and blue response blue Simulation Experiment 400 nm pitch Asahi 500 nm 500 nm pitch pitch 400 nm 400 nm pitch pitch flat flat flat random red Vivian Ferry, Claire van Lare Nano Lett. 11, 4239 (2011) Outline 4. Solving Voc < Eg 1. Light coupling 2. Light trapping 3. Current collection 5. Towards 70% efficiency Thermodynamic energy losses in PV energy conversion Nature Mater. 11, 174 (2012) Light management structures for reaching ultra-high efficiency Nature Mater. 11, 174 (2012) Multi-junction solar cell Nature Mater. 11, 174 (2012) Triple-junction tandem solar cell layer geometry Record efficiency: 43.5 % From: Richard King (Spectrolab) Integrated parallel multi-junction solar cell Light management Nature Mater. 11, 174 (2012) Scalable inexpensive large-area layer transfer and nanofabrication techniques Nature Mater. 11, 174 (2012) Outline 4. Solving Voc < Eg 1. Light coupling 2. Light trapping 3. Current collection 5. Towards 70% efficiency www.erbium.nl Nature Mater. 11, 174 (2012)
© Copyright 2026 Paperzz