851-0585-04L – Modeling and Simulating Social Systems with MATLAB Lecture 3 – Dynamical Systems Karsten Donnay and Stefano Balietti Chair of Sociology, in particular of Modeling and Simulation © ETH Zürich | 2011-03-07 Schedule of the course Introduction to MATLAB 21.02. 28.02. 07.03. 14.03. 21.03. 28.03. Working on projects (seminar theses) 04.04. 18.04. 02.05. 09.05. 16.05. 23.05. 30.05. 2011-03-07 Introduction to social-science modeling and simulation Handing in seminar thesis and giving a presentation (final deadlines to be communicated) K. Donnay & S. Balietti / [email protected] [email protected] 2 Schedule of the course Introduction to MATLAB 21.02. 28.02. 07.03. Create and Submit a Research Plan 14.03. 21.03. 28.03. Working on projects (seminar theses) 04.04. 18.04. 02.05. 09.05. 16.05. 23.05. 30.05. 2011-03-07 Introduction to social-science modeling and simulation Handing in seminar thesis and giving a presentation (final deadlines to be communicated) K. Donnay & S. Balietti / [email protected] [email protected] 3 Goals of Lecture 3: students will 1. Consolidate knowledge acquired during lecture 2, through brief repetition of the main points and revision of the exercises. 2. Understand fully the importance and the role of a Research Plan and its main standard components. 3. Learn the basic definition of Dynamical Systems and Differential Equations. 4. Implement Dynamical System in MATLAB a series of examples from Physics and Social Science Literature (Pendulum, Lorenz attractor, Lotka-Volterra equations, Epidemics: Kermack-McKendrick model) 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 4 Repetition plot(), loglog(), semilogy(), semilogx() hist(), sort() The amplitude of the sample matters! law of large numbers – LLN. (Ex.1) Outlier observations can significantly skew the distribution, e.g. mean != median. (Ex. 2) Cov() and corrcoef() can measure correlation among variables. (Ex. 3) subplot() vs figure() Log-scale plots reduce the complexity of some functional forms and fit well to draw large range of values 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 5 Repetition – Ex. 4 >> loglog(germany(:,2),'LineWidth',3); 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 6 Project Implementation of a model from the Social Science literature in MATLAB During the next two weeks: 2011-03-07 Form a group of two or three persons Choose a topic among the project suggestions (available on line) or propose your own idea Fill in the Research Plan (available on line) and send it to [email protected] AND [email protected] by email Subject line: [MATLAB FS11] name1,name2,name3 E.g. [MATLAB FS11] donnay, balietti K. Donnay & S. Balietti / [email protected] [email protected] 7 Research Plan Structure 1-2 (not more!) pages stating: Brief, general introduction to the problem Fundamental questions you want to try to answer Existing literature you will base your model on and possible extensions Research methods you are planning to use Use a Word/Openoffice format, to easily track changes It will become the first page of your report. 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 8 Research Plan Upon submission, the Research Plan can: be accepted be accepted under revision be modified later on only if change is justified (create new version) Talk to us if you are not sure Remember: the sooner the better! Final deadline for signing-up for a project is: March 14th 2011 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 9 “Plans are useless, but planning is everything.” Dwight David Eisenhower (14 Oct 1890 – 28 Mar 1969) 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 10 Dynamical systems Mathematical description of the time dependence of variables that characterize a given problem/scenario in its state space. 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 11 Dynamical systems A dynamical system is described by a set of linear/non-linear differential equations. Even though an analytical treatment of dynamical systems is usually very complicated, obtaining a numerical solution is (often) straight forward. Differential equation and Difference equation are two different tools for operating with Dynamical Systems 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 12 Differential Equations A differential equation is a mathematical equation for an unknown function (dependent variable) of one or more (independent) explicative variables that relates the values of the function itself and its derivatives of various orders df (x) Ordinary (ODE) : f (x) dx f (x, y) f (x, y) Partial (PDE) : f (x, y) x y 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 13 Numerical Solutions for Differential Equations Solving differential equations numerically can be done by a number of schemes. The easiest way is by the 1st order Euler’s Method: dx f ( x,...) x(t) dt x(t-Δt) x(t ) x(t t ) f ( x,...) t x(t ) x(t t ) t f ( x,..) 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] x t Δt 14 A famous example: Pendulum A pendulum is a simple dynamical system: L = length of pendulum (m) ϴ = angle of pendulum g = acceleration due to gravity (m/s2) The motion is described by: g sin( ) L 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 15 Pendulum: MATLAB code 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 16 Set time step 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 17 Set constants 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 18 Set starting point of pendulum 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 19 Time loop: Simulate the pendulum 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 20 Perform 1st order Euler’s method 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 21 Plot pendulum 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 22 Set limits of window 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 23 Make a 10 ms pause 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 24 Pendulum: Executing MATLAB code 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 25 Lorenz attractor The Lorenz attractor defines a 3-dimensional trajectory by the differential equations: σ, r, b are parameters. 2011-03-07 dx (y x) dt dy rx y xz dt dz xy bz dt K. Donnay & S. Balietti / [email protected] [email protected] 26 Lorenz attractor: MATLAB code 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 27 Set time step 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 28 Set number of iterations 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 29 Set initial values 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 30 Set parameters 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 31 Solve the Lorenz-attractor equations 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 32 Compute gradient 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 33 Perform 1st order Euler’s method 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 34 Update time 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 35 Plot the results 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 36 Animation 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 37 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 38 Food chain 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 39 Lotka-Volterra equations The Lotka-Volterra equations describe the interaction between two species, prey vs. predators, e.g. rabbits vs. foxes. x: number of prey y: number of predators α, β, γ, δ: parameters 2011-03-07 dx x( y ) dt dy y ( x) dt K. Donnay & S. Balietti / [email protected] [email protected] 40 Lotka-Volterra equations The Lotka-Volterra equations describe the interaction between two species, prey vs. predators, e.g. rabbits vs. foxes. 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 41 Lotka-Volterra equations The Lotka-Volterra equations describe the interaction between two species, prey vs. predators, e.g. rabbits vs. foxes. 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 42 Epidemics Source: Balcan, et al. 2009 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 43 SIR model A general model for epidemics is the SIR model, which describes the interaction between Susceptible, Infected and Removed (immune) persons, for a given disease. 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 44 Kermack-McKendrick model Spread of diseases like the plague and cholera? A popular SIR model is the Kermack-McKendrick model. The model assumes: 2011-03-07 A constant population size. A zero incubation period. The duration of infectivity is as long as the duration of the clinical disease. K. Donnay & S. Balietti / [email protected] [email protected] 45 Kermack-McKendrick model The Kermack-McKendrick model is specified as: S: Susceptible persons I: Infected persons R: Removed (immune) persons β: Infection rate γ: Immunity rate 2011-03-07 S β transmission R γ recovery K. Donnay & S. Balietti / [email protected] [email protected] I 46 Kermack-McKendrick model The Kermack-McKendrick model is specified as: S: Susceptible persons I: Infected persons R: Removed (immune) persons β: Infection rate γ: Immunity rate 2011-03-07 dS I (t ) S (t ) dt dI I (t ) S (t ) I (t ) dt dR I (t ) dt K. Donnay & S. Balietti / [email protected] [email protected] 47 Kermack-McKendrick model The Kermack-McKendrick model is specified as: S: Susceptible persons I: Infected persons R: Removed (immune) persons β: Infection rate γ: Immunity rate 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 48 Exercise 1 Implement and simulate the KermackMcKendrick model in MATLAB. Use the starting values: S=I=500, R=0, β=0.0001, γ =0.01 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 49 Exercise 2 A key parameter for the Kermack-McKendrick model is the epidemiological threshold, βS/γ. Plot the time evolution of the model and investigate the influence of the epidemiological threshold, in particular the cases: 1. βS/γ < 1 2. βS/γ > 1 Starting values: S=I=500, R=0, β=0.0001 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 50 Exercise 3 - optional Implement the Lotka-Volterra model and investigate the influence of the timestep, dt. How small must the timestep be in order for the 1st order Euler‘s method to give reasonable accuracy? Check in the MATLAB help how the functions ode23, ode45 etc, can be used for solving differential equations. 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 51 References Matlab and Art: http://vlab.ethz.ch/ROM/DBGT/MATLAB_and_art.html Kermack, W.O. and McKendrick, A.G. "A Contribution to the Mathematical Theory of Epidemics." Proc. Roy. Soc. Lond. A 115, 700-721, 1927. "Lotka-Volterra Equations”.http://mathworld.wolfram.com/LotkaVolterraEquations.html http://en.wikipedia.org/wiki/Numerical_ordinary_differential_equations "Lorenz Attractor”. http://mathworld.wolfram.com/LorenzAttractor.html 2011-03-07 K. Donnay & S. Balietti / [email protected] [email protected] 52
© Copyright 2026 Paperzz