Chapter 11 Ischemiareperfusion injury Zhao Mingyao BMC.ZZU Brief history Simple phenomenon • 1955, Sewell ligated coronary artery of dog, restore blood flow after deligation. • What happened ? Clinical: • • • • • Shock , DIC Bypass surgery Fibrinolytic therapy Cardiopulmonary operation Organ transplantation Concept of Ischemia-Reperfusion Injury The restoration of blood flow after transient ischemia may induce further reversible or irreversible cellular injury Features of IRI: 1. reversible irreversible 2. Massive in organs 3.participating factors oxygen paradox calcium paradox pH paradox Perfusion fluid Perfusion fluid effect O2 paradox Ca2+ paradox pH paradox Without O2 Without Ca2+ Acidosis Normal O2 supply with Ca2+ Correcting acidosis Deteriorate injury Section 1 Etiology of IRI 1. Duration of ischemia 2. Dependency on O2 supply 3. The condition of reperfusion: reperfusion pressure, speed, T, Na+, Ca2+, K+, Mg2+ Effect of Ischemic time on perfusion arrhythmia of rat 100 90 80 70 60 incidence rate 发生率(%) 50 40 30 20 10 0 RVA RVT RVF 5min 10min 30min Ischemic time 缺血时间(min) Section 2 mechanism of IRI Part 1. Injury of free radicals Concept and Types of FR Free radicals are atoms or molecules with unpaired electrons in their outer orbital 1. Non-lipid free radicals 2. Lipid free radicals Classification (1) Oxygen free radical(OFR) ---Induced by O2 O·-2 Types OH· 1O Rective Oxygen Species (ROS) 2 OFR H 2O 2 peroxynitrite (2) Lipid radicals types: L· LO· Alkoxyl LOO· (3) Cl·、CH3 · (Methane )、 NO · 1. Generation of free radical 1) Initiation 2) Propagation 3) Degradation (1)Production and scavenging of OFR 1) Origin of O·-2 : ①Mt ②Natural oxidation of some substances ③Enzyme catalysis ④Toxin acting on cell 2)Production process of OFR O2 O2 + e O2+ 2e + Cytaa3 2H+ O2 + 3 e + 3H+ O2 + 4 e + 4H+ H2O2 SOD HO + H2O 2 H2O H2O2 nse Single electron reduction Single electron reduction of O2 Haber-Weiss reaction (without Fe2 ) O 2 + H 2O 2 - O2 + OH +OH SLOW Fenton type of Haber-Weiss reaction ( with Fe 3 ) - O 2 + H 2O 2 Fe 2 O2 + OH +OH Fast What significance ??? 3)Scavenging of OFR ① Low molecule scavenger ② Enzymatic scavenger Water-soluble Lipid-soluble ①low molecule scavenger *hydrofacies of intra- or extracell: Cysteine、Vit C、 Glutathione *Cellular lipid: Vit E、 Vit A Cytosol :NADPH ②Enzymatic scavenger Superoxide dismutase (SOD) Catalase (CAT) Glutathione peroxidase (GSH-Px) Dismutation reaction Single electron reduction of O2 2O2 + 2H+ SOD H2O2 + O2 H2O2 nse ? GSH-Px : containing selenium scavenging large biological molecule peroxide LOOH + 2GSH GSSG + LOH + H2O GSH-Px GSH reductase 2GSH + NADP+ GSSG + NADPH + H+ (2) Mechanism of OFR ↑during IRI 1) Mitochondria pathway Ca2+ enter Mt Single electron reduction of O2 ↑ hypoxia MnSOD O-2· ↑ 2) Xanthine oxidase(XO) pathway↑ Xanthine oxidase (XO )10% Ca 2 + sensitive enzyme xanthine dehydrogenase(XD) 90% Ischemia: Hypoxathine↑↑ ATP degradation Reperfusion: (1)Ca2+→protease XD XO (2)restore O2 O2 xanthine + O·-2+ H2O2 O2 O·-2+ H2O2 + uric acid XO role in formation of OFR OH · 3)Neutrophil pathway C3,LTB4 Activates NP hexose bypass activation Respiratory burst NADH(I) NADPH(II) + O2 NADH oxidase NADPH oxidase H+ + O-2·+H2O2 4) Catecholamine autooxidation pathway Methyl transferase Vanillylmandelic Adr monoamine oxidase acid (VMA) 80% during stress O2 - · adrenochrome Renal excretion (3) The detrimental effects of OFR to tissue 1)Lipid membrane 2)Protein: channel, pump, 3)Enzyme 4)Nuclear acid : DNA Membrane lipid peroxidation Biomacromolecle crosslinkage Protein ~ Two sulfur ~ Lipid –pro ~ Protein break -S-S- OH HO OH HO CH3-SLipid-lipid ~ O Amino acid oxidation fatty acid oxidation MDA released by oxidated fatty acid Malondialdehyde (MDA) DNA disruption and chromosome aberration induced by OH about 80% damage OH +2300 (hydroxyl) Part 2 Calcium overload 1. Ca 2+ transportation and distribution Ca 2+ Ca 2+ Ca2+ binding Pr Ca 2+ Channel Ca2+pump SR Mt Na + - Ca 2+ cotransportor 2. Mechanism of ~ ① Na+ - Ca2+ exchange↑: H+-Na+ ↑; Na+ - Ca2+ ↑(forward mode reverse mode); PKC triggers ②ATP ↓: mitochondria damage, energy precursor ↓ ③Membrane permeability ↑ ④catecholamine ↑ NE α1 H+ Ca2+ P1 Gq PLC Na+ DG IP3 Ca2+ SR PKC Ca2+ filament PKC activating Na+/Ca2+ exchanger indirectly 3. The detrimental effects of Ca2+ overload to tissue (1) Activating Ca2+-activated protease (2) Defects in membrane permeability activating phospholipase A2 OFR (3) Hypercontracture and reperfusion arrhythmia cellular electrical action (4)Mitochondria damage Part 3. The endothelial injury and neutrophil activation 1.The role of neutrophil activated ①Swelling ②Adhesion ③Infiltration ④Release: arachidonic acid, PAF, lysosomal enzyme ⑤Respiratory burst ⑥Cell adhesion molecules(CAM): selectins, integrins, immunoglobulin superfamily 2. Mechanism of no-reflow phenomenon • Vaso-endothelial damage • Vaso-endothelial edema • Occlusion of microvascular luman Rulo: 肉膜 3.NO and ONOO- production • NO in VEC(eNOS), little, physiological • NO in inflammatory cell(iNOS), rich, cytotoxic (Mt respiration, aconitase activity, DNA synthesis) and OONO- peroxynitrite Free radicals with a nitrogen center ① Nitric oxide(NO) O2 NOS L-arginine NADPH L-citrulline + NO NADP+ ② Peroxynitrite, ONOONO+O2.ONOO- acidic H2O Killing bacterial & tumor NO2. + OH. + H+ Inhibit function of protein: lipid-proteincollagen linkage Pro-pro linkage disulfide linkage Protein rupture -S-S- CH3-SO Oxidation of AA Lipid-pro linkage Brief summary Ca2+ Change of metabolism & energy ? OFR VEC -NP Ca2+ overload results in cellular death Section 3 Body change during IRI 1. Heart (1)Reperfusion arrhythmia ATP-sensitive K+ channel open: hyperpolarization long chain acylcarnitines & lysophospholipids released reduced conduction velocity AP shortening + conduction slowing = re-entrant arrhythmia Generation of ectopic beats (2) Myocardial stunning Myocardial contractile function is temporarily but reversibly impaired for a period of hours to days 5 min ischemia, reperfusion, 40min later restoring 1 hr ischemia, reperfusion, a month later restoring Mechanism of myocardial stunning • OFR • Ca2+ overload • No-reflow • ATP↓ + contractile protein sensitivity ↓ for Ca2+ (3)Myocardial metabolism ATP depletion ATP substrate catabolized, rushed out Processes Involving Energy Production and Utilization by the Myocardium Ca++ Ca++ O2 Fatty Acids Lactate Pyruvate Ca++ TCA cycle (Aerobic) ATPase ATP + ATP Glycolysis (Anaerobic) Glucose Ca+ ATP PC ADP CA++T T C CPK Myokinase ATP-M + A MA + ADP Glucose-1-PO4 Glycogen Energy Sources Energy Pool tricarboxylic acid cycle phosphocreatine Energy Use C O N T R A C T I O N (4) Myocardial ultrastructure Contraction band necrosis Interstitial haemorrhage Neutrophilic plugging Distal platelets–fibrin microembolisation Histopathologic features in the myocardium following reperfusion. 2. Cerebral, Hepatic, Pulmonary, Renal ischemia-reperfusion injury Structure Metabolism function change Section 4 Principle of prevent & treatment 1. Controlling reperfusion condition 2. Antioxidant and OFR scavenging agents 3. Inhibition of neutrophil activation 4. Ca2+ antagonists or Ca2+ channel blocker Zhao Mingyao
© Copyright 2026 Paperzz