9/11/2016 For the chemical equilibrium, I 2 ( aq ) I (aq ) I 3 ( aq ) The thermodynamic Equilibrium constant is defined as; Chemical Equilibrium in Solution I2(aq) + I- (aq) = I3-(aq) Ka and Ka aI ai i ci 3 aI 2 a I aI 3 aI 2 aI I [ I 3 ] 3 [ I 3 ] I I [ I 2 ][ I ] [ I 2 ][ I ] Kc 2 Ka Kc implies I I ; 3 The activity coefficient in general is approximated by DH Limiting Law; log i Ka 509 z I 1 I 2 i I 1 from the above approximation. 2 Ka [ I 3 ] Kc [ I 2 ][ I ] I 2 ( aq ) I (aq ) I 3 ( aq ) 3 [I ] Kc [ I 2 ][ I ] To determine the [I2] one can use the quantitative reaction with the thiosulfate ion. Meaning of [X]: I 2 ( aq ) 2S 2O32 (aq) 2 I ( aq ) S4O6 2 ( aq ) c [ X ] X where c X , co are concentration of X in mol/L c0 and concentration of the standard state: 1 mol/L In effect [X] is the concentration value of X, in mol/l and no unit is involved. To calculate the concentrations of the three species in aqueous solution direct reaction method is not feasible as it disturbs the reaction equilibrium. Only the total concentration [I2(aq) + I3-(aq)] is easily determinable, not individual values. The strategy is to establish the reaction equilibrium in the aqueous solution which is in contact with an organic layer. I 2 (org ) I 2 (aq) This establishes a second (partition) equilibrium system in addition to the reaction equilibrium. k I 2 (aq ) I (aq) I 3 (aq) aq CH2Cl2 I 2 (org ) I 2 (aq) k I 2 (org ) I 2 (aq) I 2 (org ) I 2 (aq) I 2 (org ) At a given temperature partition coefficient k is a constant for a given equilibrium between the two phases. If k is known or established, one can find the I2 concentration in organic layer, and use k to find the I2(aq) concentration. 1 9/11/2016 CH2Cl2 layer titrate 10.00mL Determining k -------------- Mix --------------- Run CH2Cl2 (25 mL) Aqueous Layer (100 mL) No. Molarity I2 Molarity Kl 1 2 3 4 5 0.080 0.040 0.020 6 0.080 0.0 (DI) 0.0 (DI) 0.0 (DI) 0.15 0.15 0.03 0.080 0.040 CH2Cl2 layer titrate 10.00mL Aqueous layer titrate 25.00 mL Burette Size, mL Molarity -2 S2O3 Burette Size, mL 50 50 10 0.1 0.1 0.1 0.1 0.1 0.1 10 10 10 50 10 10 50 10 10 Molarity -2 S2O3 Run CH2Cl2 (25 mL) Molarity I2 Molarity Kl mL 1 2 3 0.080 0.040 0.020 0.0 0.0 0.0 10.00 10.00 10.00 Run No. CH2Cl2 (25 mL) Molarity I2 4 5 6 0.080 0.040 0.080 Vol (mL) ‐2 No. 0.1M S2O3 4 5 6 Aqueous layer titrate 25.00 mL Vol (mL) [I2 aq] ‐2 0.01M S2O3 k mean k = Aqueous layer titrate 25.00 mL Molarity Kl mL M mL 0.15 0.15 0.03 10.00 10.00 10.00 0.10 0.10 0.10 25.00 25.00 25.00 [I2 org] M 0.10 0.10 0.10 Aqueous layer (use 25‐mL pipette) Vol (mL) [I2 aq]Total [I3‐1 aq] [I‐1 aq] ‐2 0.01M S2O3 Kc I (aq) I (aq ) 0 I 3 (aq ) Titration Reaction CH2Cl2 layer titrate 10.00mL Determining Kc I 2 2 S 2O32 2 I S4O6 2 or I 3 2 S2O32 3I S 4O6 2 @ 'endpoint' 0.01 0.01 0.01 Aqueous Layer -2 -2 (100 mL) Vol CH2Cl2 [ S2O3 ] Aq. volume [ S2O3 ] CH2Cl2 layer (use ‐10mL pipette) Run [I2 org] 25.00 25.00 25.00 1 2 3 Water 100.00mL CH2Cl2 layer titrate 10.00mL 0.10 0.10 0.10 CH2Cl2 layer Run Vol (mL) ‐2 No. 0.1M S2O3 -2 Aq. volume [ S2O3 ] mL titrate 10.00mL I2 (M) CH2Cl2 25.00mL Determining Kc Aqueous Layer -2 (100 mL) Vol CH2Cl2 [ S2O3 ] No. 0.01 0.01 0.01 0.1 0.1 0.1 Aqueous layer titrate 25.00 mL Titration of the aqueous layer of the reaction mixture: Run [ I 2 ( aq )] [ I 3 (aq)] of the equilibrium system mol I 2 1 mol S 2O32 2 1 S 2O32 VS O 2 2 3 2 V 1 S O 2 [ I 2 ] S2O32 2 3 V 2 4 5 6 0.080 0.040 0.080 Aqueous Layer -2 -2 (100 mL) Vol CH2Cl2 [ S2O3 ] Aq. volume [ S2O3 ] CH2Cl2 layer (use ‐10mL pipette) [ I 2 ]VI 2 I2 No. CH2Cl2 (25 mL) Molarity I2 Vol (mL) ‐2 No. 0.1M S2O3 4 5 6 Run Aqueous layer titrate 25.00 mL [I2 org] Molarity Kl mL M mL 0.15 0.15 0.03 10.00 10.00 10.00 0.10 0.10 0.10 25.00 25.00 25.00 Aqueous layer (use 25‐mL pipette) Kc Vol (mL) [I2 aq] total [I aq] 2 ‐2 0.01M S2O3 M 0.10 0.10 0.10 [ I 3 ]aq [ I 2 ]aq [ I ] aq [I3‐1 aq] [I‐1 aq] I ( aq) [ I (aq )]0 I 3 (aq ) 2
© Copyright 2026 Paperzz