A Comparison of Prediction Variance Criteria for Response Surface Designs 指導教授:童超塵 作者:JOHNJ.BORKOWSKI 主講人:廖莉芳 Outline • • • • Introduction Evaluation over a Fixed Set of Points Evaluation over a Random Set of Points Conclusions 國立雲林科技大學 工業工程與管理所 Introduction • A response surface design is implemented that will enable the experimenter to fit the second-order model given by • An N-point response surface design can be represented by an N × k design matrix. 國立雲林科技大學 工業工程與管理所 Introduction • Four different types of composite designs will be studied for3,4,and5designfactors: – The central composite designs (CCDs) k=3、4、5 – The Plackett–Burman composite designs (PBCDs) k=4、5 – The small composite designs (SCDs) k=3、4 – The Notz designs k=3、4、5 國立雲林科技大學 工業工程與管理所 Evaluation over a Fixed Set of Points • The average prediction variance (APV) where • IV-criterion: • Take the average of x’(X’X)-1x over the points in the design. • The first method: – Use N-point design, the average leverage for a p-parameter polynomial model is p/N. • The second method: – The average of x’(X’X)-1x 國立雲林科技大學 工業工程與管理所 Evaluation over a Fixed Set of Points • The average prediction variance: The first method p/N The second method 國立雲林科技大學 工業工程與管理所 Evaluation over a Fixed Set of Points • IV-criterion: 國立雲林科技大學 工業工程與管理所 Evaluation over a Fixed Set of Points • This method will yield larger values and highlights the slow convergence to the exact IVvalue as the size of the evaluation set increases. 國立雲林科技大學 工業工程與管理所 Evaluation over a Random Set of Points 國立雲林科技大學 工業工程與管理所 Conclusions • If the estimate of IV is the average taken over a relatively large random set of evaluation points, it will be reliable. • Recommend: – Planning to use IV as a design evaluation criterion determine the exact value and, in general, not use the APV values provided by statistical software packages as estimates. 國立雲林科技大學 工業工程與管理所
© Copyright 2026 Paperzz