The master theorem for recurrences Let T(n) = a T(n/b) + f(n) where a 1, b > 1 are constants f(n) is an asymptotically positive function Then, T(n) can be bounded asymptotically as follows If f ( n) O ( n logb a ) for some > 0, then If f (n) (nlogb a ) then If f (n) (nlogb a ) for some > 0, and T (n) (n logb a ) T (n) (nlogb a lg n) if, for all sufficiently large n and a constant c < 1, then af (n / b) cf (n) T (n) ( f (n)) ECOE 556, Fall 2006 The master theorem: Intuition ECOE 556, Fall 2006 The master theorem: Examples T(n) = a T(n/b) + f(n) If f ( n) O ( n logb a ) for some > 0, then T (n) (n logb a ) Example: T(n) = 9T(n/3) + n If f (n) (nlogb a ) then T (n) (nlogb a lg n) Example: T(n) = T(2n/3) + 1 ECOE 556, Fall 2006 The master theorem: Examples T(n) = a T(n/b) + f(n) If f (n) (n log a ) b for some > 0, and if, for all sufficiently large n and a constant c < 1, af (n / b) cf (n) then T (n) ( f (n)) Example: T(n) = 3T(n/4) + n lg n Example where the master theorem does not apply: T(n) = 2T(n/2) + n lg n ECOE 556, Fall 2006 The master theorem: Intuition ECOE 556, Fall 2006
© Copyright 2026 Paperzz