IntegratIon, fInIte sum and defInIte Integral 1 . A Figure 5.1.8 Figure 5.1.9 Upper and lower estimates of the area in Example 2 A A Approximations of the area for n = 2, 4, 8 and 12 rectangles Section 1 / Figure 1 (a ) n 2 ( c) n 8 ( b) n 4 (d) n 12 Approximating rectangles when sample points are not endpoints 5. 1 Sigma notation 1 2 3 4 5 5 k k 1 6 1 8 27 64 125 216 i 3 i 1 4 k 1 2 3 4 163 k 1 2 3 4 5 60 k 1 3 k 1 f ( xk ) xk f ( x1 ) x1 f ( x2 ) x2 f ( x3 ) x3 The graph of a typical function y = ƒ(x) over [a, b]. Partition [a, b] into n subintervals a < x1 < x2 <…xn < 5.2 b. Select a number in each subinterval ck. Form the product f(ck)xk. Then take the sum of these products. n f (ck )xk k 1 The curve of with rectangles from finer partitions of [a, b]. Finer partitions create more rectangles with n shorter bases. f (ck )xk k 1 n lim P 0 f (ck )xk k 1 The definite integral of f(x) on [a, b] n lim P 0 f (ck )xk k 1 b f ( x)dx a If f(x) is non-negative, then the definite integral represents the area of the region under the curve and above the x-axis between the vertical lines x =a and x = b Rules for definite integrals b a f ( x)dx f ( x )dx a a a b b f ( x)dx 0 b kf ( x)dx k a a f ( x)dx a a ( f ( x) g ( x))dx b b c a a a f ( x) dx g ( x) dx b ( f ( x))dx b b f ( x) dx f ( x) dx c 5.3 The Fundamental Theorem of Calculus x 1. If g ( x) f (t )dt , then g ( x) f ( x) a Where f(x) is continuous on [a,b] and differentiable on (a,b) x d f (t )dt f ( x) dx a Find the derivative of the function: x g ( x) (t 3 5t sin t )dt a The Fundamental Theorem of Calculus b 2. f ( x)dx F (b) F (a) a 4 2 ( x 3x)dx 2 3 2 sec d 0 where F ( x) f ( x) Indefinite Integrals f ( x)dx F ( x) means F ( x) f ( x) Definite Integrals b a f ( x)dx F (b) F (a) where F ( x) f ( x) Try These 1) (2sin 5cos 3sec 2 )d 3y 2 2) dy y 3 3) (1 x 2 )dx 1 Answers 1) (2sin 5cos 3sec2 )d 2cos 5sin 3tan C 1 1 3y 2 2) dy (3 y 2 2 y 2 )dy y 3 2 1 2 2y 4y C 3 3 1 1 3) (1 x 2 ) 2 dx (1 2 x 2 x 4 )dx 2 3 1 5 3 [ x x x ]1 69.6 1.8667 67.733 3 5 Indefinite Integrals and Net Change • The integral of a rate of change is the net change. b f ( x)dx F (b) F (a) net area but a b | f ( x) | dx total area a If the function is non-negative, net area = area. If the function has negative values, the integral must be split into separate parts determined by f(x) = 0. Integrate one part where f(x) > 0 and the other where f(x) < 0. Indefinite Integrals and Net Change • The integral of a rate of change is the net change. t2 v(t )dt s(t ) s(t ) 2 1 net change or displacement t1 t2 | v(t ) | dt total distance travelled t1 If the function is non-negative, displacement = distance. If the function has negative values, the integral Must be split into separate parts determined by v = 0. Integrate one part where v>0 and the other where v<0. 5.5 Review of Chain rule d 3x 2 x 1 dx 1 3 1 3x 2 x 1 3 d sin 3 dx 2 3 6 x 1 6x 1 3 3x 2 x 1 d 3 2 d sin 3 sin sin dx dx 3sin 2 cos 2 3 If F is the antiderivative of f f ( g ( x)) g ( x)dx F ( g ( x)) C u g ( x) du g ( x)dx f ( g ( x )) g ( x ) d x f ( u ) du F ( u ) C F ( g ( x)) C 6x 1 3 3x 2 x 1 2 3 u 3x x 1 du (6 x 1)dx 1 u 3 2 3 du 2 3 dx Let u = inside function of more complicated factor. 2 1 (6 x 1) 3 x 2 x 1 3 dx 1 3 1 3u 3 C 1 2 (3x x 1) 3 Check by differentiation C 3sin 2 cos d u sin du cos d 3 u 2du Let u = inside function of more complicated factor. u3 C Check by differentiation sin3 C Substitution with definite integrals 7 4 3xdx 0 u 4 3x du 3dx du dx 3 1 3 3 7 3 3 1 2 1 2 2 2 2 234 2 2 2 u du u C (4 3x) (25 4 ) 3 3 3 9 9 0 9 Using a change in limits 25 3 3 1 2 2 234 2 2 u du u (25 4 ) 34 9 4 9 9 25 1 2 3 2 The average value of a function on [a, b] b 1 Average f ( x ) dx baa
© Copyright 2026 Paperzz