ReviewProblemsforTest1 1.Let y = − x 2 + 4 . a)Findtheslopeofthelinethroughthepoints ( 1 , 3 ) and ( 1+ h , f (1+ h) ) . b)Whathappenstothisslopeashgetscloserandcloserto0? 2.Findeachofthefollowinglimits.Showallwork. x 2 + x − 12 a) lim x→ 3 x−3 2− x b) lim x→ 4 4−x sin ( 3θ ) c) lim θ→ 0 θ d) lim+ x→ 1 e) lim x→ ∞ f) lim+ x→ π 2 x −1 x −1 3x 2 − 7 x2 + 4 sin x cos x g) lim x→ ∞ h) lim− x→ 1 5x + 9 x2 + 1 x+3 x2 − 1 3.Definepreciselywhatitmeansforafunctionftobecontinuous.Let x2 − 4 f (x) = for x ≠ 2 .Definefat x = 2 sothatfiscontinuousat x = 2 . x−2 4.Whatcanyousayaboutthefunctionfwhosegraphisgivenbelow? 5.a)Definecarefully,intermsofalimit,thederivativeofafunctionfatthepoint x = x0 .Itisdenotedby f '(x0 ) . b)Whatarethetwoimportantinterpretationsof f '(x0 ) ? c)Let y = f (x) = x 2 + 1 .Usethedefinitionofthederivativetofind f '(1) . 6.Findeachofthefollowingderivatives.Showallwork. 2 4 a) If f (x) = (3x + x − 1) , find f '(x) . (1− x )3 , find y' . b) If y = 5 ( x2 + 4) 2 c) If w = ln (1+ t ) , find w" . d 2u −3x , find . d) If u = x e dx 2 dr 3 e) If r = sin ( 2θ ) , find dθ . f ) If r = sin −1 ( 3θ ) , find dr . dθ g) If w = x tan −1 (7x) , find w" . 7.Considerthecurvedefinedby ( x 2 + y 2 ) = 16xy .Findtheequationof 2 thelinetangenttothecurveatthepoint ( 2 ,2 ) . 8.Let f (x) = x 3 + 7 .Findthederivativeof f −1 at x = 8 . 9.Let y = ( sin x )x .Find y' . 10.Twocommercialplanesareflyingatanaltitudeof40,000feetalongstraight-line coursesthatintersectatrightangles.PlaneAisapproachingtheintersectionpoint ataspeedof442knots.PlaneBisapproachingtheintersectionat481knots.At whatrateisthedistancebetweentheplaneschangingwhenplaneAis5nautical milesfromtheintersectionpointandplaneBis12nauticalmilesfromthe intersectionpoint?
© Copyright 2026 Paperzz