SM2-07: Shear SHEAR & NON-UNIFORM BENDING M.Chrzanowski: Strength of Materials 1/11 SM2-07: Shear Mx = 0, My = 0, Mz = 0 Qx=N= 0, Qy ≠ 0, Qz = 0 Formal definition: the case when set of internal forces reduces solely to the shear force vector perpendicular to the bar axis y Qy Mx = 0, My ≠ 0, Mz = 0 or Qx= N=0, Qy= 0, Qz ≠ 0 Shear is associated with bending ! x z Qx=N=0, Qy= 0, Qz ≠ 0 y y x Qz z My NON-UNOFRM BENDING M.Chrzanowski: Strength of Materials x Qz z PURE SHEAR 2/11 SM2-07: Shear Pure shear M Q Reactions Mu0 ? M.Chrzanowski: Strength of Materials Q=const 3/11 SM2-07: Shear Pure shear P P t t P t t A A A A 4At = P M.Chrzanowski: Strength of Materials t = P/4A P Mean shear stress 4/11 SM2-07: Shear Non-uniform bending Z Z X X h l Bernoulli hypothesis of plane cross-sections does not hold!! For h/l<<1 distorsion is small and we will use the formula for normal stress derived from this assumption : M.Chrzanowski: Strength of Materials x My Jy z 5/11 SM2-07: Shear Non-uniform bending Z Z P P X X tzx Z txz txz= txz(z,y) X ? „point” image txz txz tzx Qz = P = t xz dA A M.Chrzanowski: Strength of Materials 6/11 SM2-07: Shear Non-uniform bending Z A* x x dx x x D,F B,C z B,D y M y x b (z) C,F M y x dx t xz x t xz x dx Qz x Qz x dx x Prismatic bar! D N * x x x dA A* x My Jy z A* dx x x dx M y x dx Jy M.Chrzanowski: Strength of Materials b (z) N B ~ t~ C * x dx x x dx dA A* zx z ~ lim N * x N * x dx t~zx b( z ) dx dx0 F t~zx Qz x S *y z J y bz t~xz 7/11 SM2-07: Shear Non-uniform bending 1 S z ~ Qz x Formula t xz Jy b z holds for prismatic bars only! and is given in main principal axes of cross-section inertia. Distribution along z-axis A z A* Also: z A S z ~ max t xz max x Qz x max z b z zmax qi ijj y zmin qx 0 x 0 t xy 0 t~xz 1 t~xz 0 B For A: S*(zmax)=0 since A*=0 For B: S*(zmax)=0 since A*=A M.Chrzanowski: Strength of Materials Kinematic Boundary Conditions in A and B: t~xz 0 t~xz 0 qy 0 t yx 0 y 0 t yz 1 t yz 0 q 0 t~ 0 t 0 1 q z zx zy z z z 8/11 SM2-07: Shear Non-uniform bending Distribution along z-axis; special cases b(z) = b =const|z b(z) – linear function of z z z Parabola 2o tmax= 3Q/2bh h/2 Parabola 3o 2h/3 tmax= ? y y h/2 h/3 b b(z) – step-wise change h/2 h/2 c tb tmax y y h/2 b Parabola 2o z z tc tb/ tc=c/b h/2 b M.Chrzanowski: Strength of Materials b 9/11 SM2-07: Shear Non-uniform bending Stress distribution in beams – trajectories of main principal stresses x M y x t zx 1, 2 Jy txz z Qz x S z * y x x t xz tzx J y bz 1 x x2 4t xz2 2 2 t xz tg1,2 z 1,2 z 0 tg1, 2 tzx z t xz 1, 2 M.Chrzanowski: Strength of Materials txz x z x For z=0: x 0 tg1, 2 1 1, 2 t xz 1, 2 45o 10/11 SM2-07: Shear Non-uniform bending l/2 2=t 1=t Principal stress trajectories 2=45o 2=t 1=45o z 1=t x My 0 Qz 0 M.Chrzanowski: Strength of Materials 11/11 SM2-07: Shear stop M.Chrzanowski: Strength of Materials 12/11
© Copyright 2026 Paperzz