FACEPA Farm Accountancy Cost Estimation and Policy Analysis of European Agriculture EU farms’ technical efficiency, allocative efficiency, and productivity change in 1990-2006 FACEPA Deliverable No. D 5.2 – December 2010 Zoltán Bakucs CUB Imre Fertő CUB József Fogarasi CUB Csaba Forgács CUB József Tóth CUB Eduard Matveev EMU Mati Sepp EMU Yann Desjeux INRA Laure Latruffe INRA Luca Cesaro INEA Sonia Marongiu INEA Agostina Zanoli INEA Mark Dolman LEI Rafat Soboh LEI The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no 212292. Executive Summary The purpose of this deliverable is to present and analyse various efficiency indicators for European Union (EU) countries included in the FACEPA project, Belgium, Estonia, France, Germany, Hungary, Italy, The Netherlands and Sweden. The availability of long period datasets between 1990 and 2006, allow us to concentrate on long time trends in technical efficiency especially in Old Member States. This study is the first which may provide a comprehensive overview on the development in farm level efficiency across eight European countries. Two main approaches developed over time for analysing technical efficiency in agriculture are used in this report. (1) The nonparametric data envelopment analysis (DEA); (2) the parametric stochastic frontier analysis (SFA). While the vast majority of empirical studies on technical efficiency in the agricultural sector mostly have utilized only one method to estimate their efficiencies, we apply both methodological approaches to measure efficiency aiming even higher level of robustness. In addition, most studies focus on a single country’s agricultural sector, thus the comparative analysis of the technical efficiency across countries is rather scarce. We take into account the relative importance of specific subsectors and rationale of compilation more homogeneous sample thus our study focuses on the field crops and dairy sectors separately. Our study highlights the importance of easier availability to the farm level data, namely Farm Accountancy Data Network (FADN) data in the EU, which provides interesting insights for policy makers on farm level technical efficiency and develops more targeted policy to improve efficiency in European agriculture. This deliverable presents the estimations of each country for each year for two sectors: specialised field crop (Type of Farming TF1) and dairy (TF41). The estimations include the following efficiency indicators (reported in Annexes 4 to 17): Technical Efficiency, Scale Efficiency, Allocative Efficiency, Technical Efficiency Change, Scale Efficiency Change, Allocative Efficiency Change, Technological Change and Productivity Change. FADN data from 1990 to 2006 (for Sweden from 1995 to 2006) for Old Member States and 2004 to 2006 for the New Member States were used for the analysis. Technical and Allocative efficiency estimates were computed using both parametric (SFA) and non-parametric (DEA) methods, the other efficiency measures were estimated using DEA. Our main results are the following. Generally, all countries have relatively high levels of mean technical efficiency ranging from 0.72 to 0.92 for both field crops and dairy farms. Interestingly the majority of countries have better performance in dairy sectors in terms of higher levels of mean efficiency than in field crop production. A slightly decreasing trend however may be observed for all countries. Technical Efficiency estimates are largely in line with those obtained by previous studies. 2 We investigate the issue of how relative performance of farms fluctuates in terms of technical efficiency over time. We may hypothesise that many poorly performing farms remain inefficient and some farmers are performing always efficiently. We can identify farms which are usually at the bottom or top of the efficiency ranking. However, the FADN data has an inherent problem for long time period analysis arising from its rotated/unbalanced panel nature, namely that not all the farms are observed for the whole period. So we need to calculate transition matrices in each consecutive year. Surprisingly stability analysis revealed that in average 60% of farms maintain their efficiency ranking in two consecutive years, whilst 20% improve and 20% worsen their positions for all countries. However, these ratios slightly fluctuate around these values for one year to next year. Mobility analysis ranks countries according to the mobility of SFA scores within the distribution. Farms in New Member States are more mobile than those in EU15. The DEA estimation shows a similar declining trend on the development of technical efficiency over time except for the Swedish dairy sector showing an increasing efficiency trend. Additionally, we investigate the total productivity changes in two steps. First, we do not find a definite trend in total factor productivity changes. Second, we address the question whether total factor productivity changes converge or diverge over time. Using panel unit root tests our estimations reveal a convergence of productivity across old EU member countries during analysed period. Finally, we decompose the total factor productivity changes into its main elements. Field crop farm indicators generally present a significantly higher volatility than dairy farms. Random effect panel regression of Total Factor Productivity Change on its components shows Technological Change as being the significant positive driver for crop farms, whilst Technical Efficiency Change followed by Technological Change are the most important for dairy farms. In addition we do not find significant impacts of CAP reforms in 1992 and 2000 on total productivity changes. 3 Contents Executive Summary 2 Contents 4 Figures 5 Tables 6 Introduction 7 Literature review 9 Methodology Stochastic Frontier Analysis Data Envelopment Analysis The Constant Return to Scale (CRS) model The Variable Return to Scale (VRS) model Panel Unit Root analysis Stability Analysis Software 11 11 13 13 15 16 17 18 Data 19 Results Technical efficiency analysis OLS on time trend Stability Analysis Total Factor Productivity Analysis 23 23 26 27 34 Conclusions 42 References 45 4 Figures Figure 1. Technical efficiency scores for crop farms ( SFA/DEA) ....................................................... 25 Figure 2. Technical efficiency scores for dairy farms (SFA/DEA) ....................................................... 25 Figure 3 . Tercile stability analysis for Belgian crop and dairy farms .................................................. 28 Figure 4 . Tercile stability analysis for Estonian crop and dairy farms ................................................. 28 Figure 5. Tercile stability analysis for French crop and dairy farms ..................................................... 29 Figure 6. Tercile stability analysis for German crop and dairy farms ................................................... 29 Figure 7. Tercile stability analysis for Hungarian crop and dairy farms .............................................. 30 Figure 8. Tercile stability analysis for Italian crop and dairy farms..................................................... 30 Figure 9. Tercile stability analysis for Dutch crop and dairy farms ..................................................... 31 Figure 10. Tercile stability analysis for Swedish crop and dairy farms ................................................ 31 Figure 11. TFPC and its components for Belgium crop and dairy farms .............................................. 35 Figure 12. TFPC and its components for Italian crop and dairy farms ................................................. 35 Figure 13. TFPC and its components for French crop and dairy farms ................................................ 36 Figure 14. TFPC and its components for German crop and dairy farms............................................... 36 Figure 15. TFPC and its components for Hungarian crop and dairy farms........................................... 37 Figure 16. TFPC and its components for Estonian crop and dairy farms ............................................. 37 Figure 17. TFPC and its components for Dutch crop and dairy farms .................................................. 38 Figure 18. TFPC and its components for Swedish crop and dairy farms .............................................. 38 5 Tables Table 1. Overview of empirical studies of technical efficiency in crop and dairy sectors of FACEPA countries .................................................................................................................................................. 9 Table 2. Descriptive statistics and concentration index of crop farms (UAA)..................................... 21 Table 3. Descriptive statistics and concentration index of dairy farms (UAA)..................................... 21 Table 4. Descriptive statistics and concentration index of dairy farms (livestock units) ...................... 21 Table 5. SFA model specifications for crop farms ................................................................................ 23 Table 6. SFA model specifications for dairy farms ............................................................................... 24 Table 7. OLS regression of efficiency scores on a time trend............................................................... 26 Table 8. Stability analysis, percentage of farms in the same tercile during two consecutive years ...... 27 Table 9. Average change in technical efficiencies for crop farms ........................................................ 32 Table 10. Average change in technical efficiencies for dairy farms ..................................................... 32 Table 11. Means of M1 and M2 mobility indices ................................................................................. 33 Table 12. Coefficient of variation for Total Factor Productivity Changes and its components for crop products ................................................................................................................................................. 34 Table 13. Coefficient of variation for Total Factor Productivity Changes and its components for dairy products ................................................................................................................................................. 34 Table 14. OLS TFPC on time trend ...................................................................................................... 39 Table 15. Panel unit root analysis for crop farms .................................................................................. 39 Table 16. Panel unit root analysis for dairy farms................................................................................. 40 Table 17. Panel estimations for total productivity changes for crop products ...................................... 41 Table 18. Panel estimations for total productivity changes for milk products ...................................... 41 6 Introduction The technical efficiency refers to the situation where it is impossible for a farm to produce more with given technology. There are two possibilities for farmers. First, produce larger output using the same inputs, second, produce the same output with less amounts of the overall inputs. In practice, the research and policy interests are focusing on the relative position in terms of efficiency of particular farms with respect to others. Consequently, the technical efficiency can be described by the relationship between observed output and some ideal or potential production. There is wealth of methodological and empirical literature focusing on the issues in efficiency and productivity (standard theoretical references Coelli et al., 2005; Kumbhakar and Lovell, 2000; while comprehensive overview on empirical research Bravo-Ureta et al. 2007). There exist two main approaches developed over time for analysing technical efficiency in agriculture. (1) The construction of a nonparametric piecewise frontier using linear programming method known as data envelopment analysis (DEA); (2) the estimation of a parametric production function using stochastic frontier analysis (SFA). While the vast majority of empirical studies on technical efficiency in the agricultural sector mostly have utilized only one method to estimate their efficiencies, we apply both methodological approaches to measure efficiency. In addition, the most studies focus on the single country’s agricultural sector, thus the comparative analysis of the technical efficiency is rather scarce (see recent exceptions Barnes et al 2010, and Zhou and Lansink 2010). More importantly, easier availability to the farm level data, namely FADN data in the EU may provide interesting insights for policy makers on farm level technical efficiency and develop more targeted policy to improve efficiency in European agriculture. The purpose of this deliverable is to present and analyse various efficiency indicators for the EU countries included in the FACEPA project, Belgium, Estonia, France, Germany, Hungary, Italy, The Netherlands and Sweden. The availability of long period datasets between 1990 and 2006, allow us to concentrate on the long time trends in technical efficiency especially in Old Member States. This study is the first which may provide a comprehensive overview on the development in farm level efficiency across eight European countries. The rest of this deliverable is organised as follows. Section 2 presents a brief review on the efficiency literature in analysed countries using FADN dataset. Section 3 describes the efficiency methodology, followed by the description of the datasets and variables employed in section 4. Section 5 presents the main results of the analysis in two steps. First we outline the results based on the SFA approach. Second we show our estimations applying DEA methodology. Detailed outcomes of various efficiency 7 indicator estimations are presented in the Annexes. In the results section of this deliverable we focus on the possible interpretation of results, each sub-chapter focusing on a main issue: • Technical Efficiency results are presented and discussed paying special attention to trend and stability analysis. • The second sub-chapter is dedicated to Total Factor Productivity Analysis. After presenting Total Factor Productivity Change (TFPC) and its component estimations, unit root tests are applied to analyse convergence. Then decomposition analysis of TFPC indicators closes the sub-chapter, looking to determine sources of TFPC. Finally the last chapter summarizes main results of the deliverable and concludes. 8 Literature review During the last two decades research on various farm efficiency indicators, most often technical efficiency, has flourished. This rich research is mostly due to the appearance of software packagessome freely available- and the increased availability of detailed farm survey data. Table 1 presents a brief overlook of some of the recent efficiency and productivity papers. We focused on field crop and dairy sectors of countries included in this research, presenting the main methodology, data source and time-span, and estimated mean technical efficiency. Table 1. Overview of empirical studies of technical efficiency in field crop and dairy sectors of FACEPA countries Paper Sector Period Methodology Data Mean TE - - Germany Kleinhanß et al. (2007) Brümmer et al.(2002) Zhu and Oude Lansink Live- 1999- stock 2000 Dairy 1991- parametric (output specialised dairy farms 1994 distance fct.), translog in Schleswig-Holstein 1995- parametric (output FADN 0.64 2004 distance fct.), Translog 0.89 Crop (2010) non-parametric, DEA FADN 0.95 Netherlands Brümmer et al. (2002) Zhu and Oude Lansink Dairy Crop (2010) 1991 - parametric (output FADN (highly 1994 distance fct.), translog specialised dairy farms) 1995- parametric (output FADN 0.76 2004 distance fct.), translog 1998- non-parametric, DEA, Farm Economic Survey, 0.84 (0.82) 2002 input (output) oriented Agriwise, Swedish Sweden Hansson, H. (2007) Dairy Dairy Association database Larsen, K. (2010) Crop Larsen, K. (2010) Dairy Zhu and Oude Lansink Crop (2010) 2001- non-parametric, DEA, 2004 CRS (VRS) 2001- non-parametric, DEA, 2004 CRS (VRS) 1995- parametric (output 2004 distance fct.), Translog FADN 0.52 (0.58) FADN 0.65 (0.70) FADN 0.71 FADN 0.47 France Latruffe and Fogarasi (2009) Crop 2001- non-parametric, DEA 2004 9 Latruffe and Fogarasi Dairy 2001- non-parametric, DEA FADN 0.76 FADN 0.76 FADN TFPC of 1% 2004 (2009) Italy Barnes et al. (2010) Crop SFA Belgium Coelli et al. (2006) Crop 1987- non-parametric, DEA, 2002 Malmquist TFP p.a. Hungary Bakucs et al. (2010) Latruffe and Fogarasi All 2001- parametric, SFA, farms 2005 translog Crop 2001- 0.73 non-parametric, DEA FADN 0.42 non-parametric, DEA FADN 0.85 FADN 0.74 2004 (2009) Latruffe and Fogarasi FADN Dairy 20012004 (2009) Estonia Vasiliev et al. (2008) Crop 2000- non-parametric, DEA 2004 Note: TE = technical efficiency; fct = function Source: authors’ compilation With the exception of few studies (e.g. Barnes et al. 2010, that also estimates a metafrontier for several countries), most of the research done in Europe, focuses on a single country – one or several agricultural sectors. Besides estimating various efficiency indicators, most of these papers focus on determining the drivers of efficiency, i.e. socio-economic variables that influence farms’ relative position towards the efficient frontier. The analysis of determinants of efficiency is not an objective of this deliverable. Therefore, besides presenting a large number of efficiency indicator estimations for each country and sector, some computed with both parametric and non-parametric methods, here we analyse the general evolution of technical efficiency and total factor productivity change estimates, focusing on country wise similarities and differences, stability of farms’ position within technical efficiency ranking, trend and convergence analysis. 10 Methodology There are a number of methodological approaches applied in this deliverable. Various efficiency indicators, as well as changes of these scores were computed using standard parametric and nonparametric productivity analysis methodology. In order to analyse the convergence of selected indicators in a panel framework, Ordinary Least Squares (OLS) on time trend, panel unit root tests and dynamic OLS analysis methods were applied. Stability analysis was used to evaluate the percentage of farms with stable (over a two year period), increasing or decreasing efficiency ranking. Stochastic Frontier Analysis Within the parametric approaches, the Stochastic Frontier Analysis, (SFA) is commonly used. Aigner at al. (1977) and Meeusen and Van den Broeck (1977) have simultaneously yet independently developed the use of SFA in efficiency analysis. The main idea is to decompose the error term of the production function into two components, one pure random term (v i ) accounting for measurement errors and effects that can not be influenced by the firm such as weather, trade issues, access to materials, and a non-negative one, measuring the technical inefficiency, i.e. the systematic departures from the frontier (u i ): Yi = f ( xi ) exp(vi − u i ) or, equivalently: (1) ln(Y ) i = βxi + vi − ui ) where Y i is the output of the ith firm, x i a (k+1) vector of inputs used in the production, f(·) the production function, u i and v i the error terms explained above, and finally, β a (k+1) column vector of parameters to be estimated. The output orientated technical efficiency, (TE) is actually the ratio between the observed output of firm i to the frontier, i.e. the maximum possible output using the same input mix x i . Arithmetically, technical efficiency is equivalent with: TEi = Yi exp( xi β + vi − ui ) = = exp(−ui ) , 0 ≤ TEi ≤ 1 . exp( xi β + vi ) Yi* (2) Contrary to the non-parametric DEA approach, where all technical efficiency scores are located on, or below the efficient frontier (see below), in SFA they are allowed to be above the frontier, if the random error v is larger that the non-negative u. 11 Applying SFA methods requires distributional and functional form assumptions. First, because only the w i =v i - u i error term can be observed, one needs to have specific assumptions about the distribution of the composing error terms. The random term v i , is usually assumed to be identically and independently distributed drawn from the normal distribution, N (0, σ v2 ) , independent of u i . There are a number of possible assumptions regarding the distribution of the non-negative error term u i associated with technical inefficiency. However most often it is considered to be identically distributed as a half normal random variable, N + (0, σ u2 ) or a normal variable truncated from below zero, N + ( µ , σ u2 ) . Second, being a parametric approach, we need to specify the underlying functional form of the Data Generating Process, DGP. There are a number of possible functional form specifications available, however most studies employ either Cobb-Douglas (CD): K f ( xi ) = e β0 ∏ xikβ k (3) k =1 or TRANSLOG (TL) specification: K ln f ( xi ) = ∑ β k ln xik + k =1 1 K K ∑∑ β kj ln xik ln x jk . 2 k =1 j =1 (4) Because the two models are nested, it is possible to test the correct functional form by a Likelihood Ratio, LR test. The TL is a more flexible functional form, whilst the CD restricts the elasticities of substitution to 1. The model could be estimated either with Corrected Ordinary Least Squares, COLS or Maximum Likelihood, ML. With the availability of computer software, the estimation by ML became less computationally demanding, and the ML estimator was found to be significantly better than COLS (Coelli et al.,1997). With panel data, TE can be chosen to be time invariant, or to vary systematically with time. To incorporate time effects, Battese and Coelli (1992) define the non-negative error term as exponential function of time: uit = exp[(−η (t − T )]ui (5) where t is the actual period, T the final period, and η a parameter to be estimated. TE either increases (η>0), decreases (η<0) or it is constant over time, i.e. invariant (η=0). LR tests can be applied to test the inclusion of time in the model. Since TE is allowed to vary, the question arise what determines the changes of TE scores. Early studies applied a two-stage estimation procedure, first determining the inefficiency scores, and then, in a second stage regressing TE scores upon a number of firm specific variables assumed to explain changes in inefficiency scores. Some authors however showed, that conflicting assumptions are needed for the two different estimation stages. In the first stage, the error term representing inefficiency effects, are assumed to be independently and identically distributed, whilst in the second stage they are assumed to be function of firm specific variables explaining 12 inefficiency, i.e. they are not independently distributed (Curtiss, 2002). Battese and Coelli (1995) proposed a one stage procedure where firm specific variables are used to explain the predicted inefficiencies within the SFA model. The explanatory variables are related to the firm specific mean μ of the non-negative error term u i : µi = ∑ δ j zij (6) j where μ i is the ith firm-specific mean of the non-negative error term; δ j are parameters to be estimated; z ij are ith firm-specific explanatory variables. Using cross-section or panel data may often lead to heteroscedasticity in the residuals. With heteroscedastic residuals, OLS estimates remain unbiased but no longer efficient. In frontier models however, the consequences of heteroscedasticity are much more severe, as the frontier changes when the dispersion increases. Caudill et al. (1995) introduced a model which incorporates heteroscedasticity into the estimation. That is done by modelling the relationship between the variables responsible for heteroscedasticity and the distribution parameter σ u : σ ui = exp(∑ xij ρ j ) (7) j where x ij are the jth input of the ith farm, assumed to be responsible for heteroscedasticity, and ρ j a parameter to be estimated. Within SFA approach it is possible to test whether any form of stochastic frontier production function is required or the OLS estimation is appropriate using a LR test. Using the parameterisation of Battese and Cora (1977), define γ, the share of deviation from the frontier that is due to inefficiency: γ= σ u2 σ v2 + σ u2 (8) where σ2 v is the variance of the v and σ2 u the variance of the u error term. It should be noted however, that the test statistic has a ‘mixed’ chi square distribution, with critical values tabulated in Kodde and Palm (1996). Data Envelopment Analysis The Constant Return to Scale (CRS) model In the model presented below Constant Return to Scale (CRS) and input orientation are assumed. This model yields an objective evaluation of overall technical efficiency (TE) and estimates the amounts of the identified inefficiencies. 13 The data relate to inputs and represented by the vectors matrix (X) and by and outputs on each of . The data of all firms. For the i-th firm, these are firms are represented by input output matrix (Y). The purpose of DEA is to construct a non-parametric envelopment frontier over the data points such that all observed points lie on or below the production frontier. The frontier is therefore constructed with the best performing farms of the sample. DEA model involves optimising a scoring function, defined as the ratio of the weighted sum of outputs and the weighted sum of inputs. This function is optimised subject to the condition that the value of the objective function achieved can not be greater than one, implying that efficient units will have a score of one. For each i-th firm, the linear problem is the following: (9) where , is the scoring function ( is an vector of output weights and is an vector of input weights). The goal is to find values for u and v that maximise the efficiency score of the i-th firm subject to the constraint that all the efficiency measures must be less than or equal to one. The ratio formulation of the model has infinite number of solutions and to avoid this problem it is necessary to impose the constraint: Then, the maximization becomes (10) This transformation of and in and , is identified with multiplier form of the DEA linear programming problem. Introducing the duality in linear programming, one can derive an equivalent envelopment form of this problem: 14 where is a scalar that represents the minimum level to which the use of inputs can be reduced without altering the output level. So, the scalar provides the value of the global technical efficiency score for the i-th firm. Indeed, as the Farrell’s definition (1957), will satisfy the condition of less than or equal to 1: if it is equal to one, the firm is considered technically efficient (it is a point on the frontier). It means also that the use of all inputs can not be reduced at the same time without altering technical efficiency, although a variation in the use of one of them may improve efficiency. If the index is less than one there is some degree of technical inefficiency (firms are below the frontier). is a vector of constants that represents the weights to be used as multipliers for the input levels of a reference production unit to indicate the input levels that an inefficient unit should aim at in order to achieve efficiency. It’s important to underline that for each firm we must find a value of programming problem must be solved , because the linear times, one for each firm in the sample. The Variable Return to Scale (VRS) model The CRS DEA model is appropriate only when the farm is operating at an optimal scale. The previous model thus permits to obtain a measure of global technical efficiency that does not allow variations in returns to scale. The VRS model is an extension of the CRS DEA model, introduced to take into account some factors such as imperfect competition, constraints, on finance, etc., that may cause the firm to be not operating at an optimal level in practice. This model distinguishes between pure technical efficiency (calculated with the VRS model) and scale efficiency (SE), identifying whether increasing, decreasing or constant returns to scale possibilities are present for further exploitations. As a consequence, the CRS linear model presented above changes by adding a further convexity constraint: (11) Hence, the envelopment form of the input oriented VRS DEA model is specified as where is a vectors of ones. 15 θ is the input technical efficiency score, having a value 0 < θ ≤ 1. As the previous case, if the θ value is equal to one, the firm is on the frontier; the vector λ is an vector of weights which defines the linear combinations of the peers of the i-th firm. Because the VRS DEA model is more flexible and envelops the data in a tighter way than the CRS DEA model, the VRS technical efficiency score is equal to or greater than the CRS score. . This relationship can be used to measure the scale efficiency of the firms: (12) SE = 1 implies scale efficiency or the presence of CRS, while SE < 1 indicates scale inefficiency that can be due to the existence of either increasing or decreasing returns to scale. This may be determined by calculating an additional DEA problem with non-increasing returns to scale (NIRS) imposed. The previous VRS DEA model may be changed replacing the restriction with . IF the NIRS TE score is different to the VRS TE score, it indicates that increasing returns to scale exist for the firm. If they are equal, then decreasing returns to scale apply. Panel Unit Root analysis Panel unit root tests provide an easy way to econometrically test stationarity, and thus convergence or divergence of total factor productivity change components. Panel unit root tests are similar, but not identical, to unit root tests run on individual series. Consider equation 13: yi ,t = ρyi ,t −1 + X i ,tδ i + ε i ,t (13) where i = 1,2,…,N are cross-section units and t=1,2,…,T the observed periods, X it possible exogenous variables, ρ i the autoregressive coefficients, and the errors ε i,t are assumed to be mutually independent idiosyncratic disturbance terms. If ρ i < 1 , y i is considered stationary, while if ρ i = 1 , the process contains a unit root. With panel unit root tests, there are two assumptions regarding ρ. First, the persistence parameters are common across cross-sections, that is to say ρ i = ρ, for all i. Second, ρ i can freely vary across cross-sections. There are a number of panel unit root tests assuming one of the above assumptions. Considering the well known low power properties of unit root tests, in this deliverable we employ a battery of unit root tests: Levin et al. (2002) method (common unit root process), Im et al. (2003) method (assuming individual unit root processes), ADF-Chi square and PPChi square. 16 Stability Analysis Efficiency scores as such, do not reveal much about the fluctuation of farms’ relative performance. From policy point of view however, it is an interesting question whether low performing farms are always inefficient and vice versa, i.e. farms with higher TE scores are efficient throughout the period. Policy relevance is given by the fact that chronically lower performing farms may be targeted with specific measures in order to improve their efficiency scores. With large panel datasets however, due to sample attrition it is not feasible to follow the TE scores of given farms through longer time periods, therefore comparisons between consecutive years were done. We follow the stability analysis methodology outlined by Barnes et al. (2010). Yearly farm TE scores were classified by terciles, then transition matrices linking two consecutive years were constructed, that indicate whether the considered farm remained in the same tercile, or its relative position has worsened, or contrary, improved. The degree of mobility in patterns of SFA scores can be summarised using indices of mobility. These formally evaluate the degree of mobility throughout the entire distribution of SFA scores and facilitate direct cross-country comparisons. The first of these indices (M 1 , following Shorrocks, 1978) evaluates the trace (tr) of the transition probability matrix. This index thus directly captures the relative magnitude of diagonal and off-diagonal terms, and can be shown to equal the inverse of the harmonic mean of the expected duration of remaining in a given cell. M = 1 K − tr (P) K −1 (14) where K is the number of cells, and P is the transition probability matrix. The second index (M 2 , after Shorrocks, 1978 and Geweke et al., 1986) evaluates the determinant (det) of the transition probability matrix. M 2 = 1 − det(P) . (15) In both indices, a higher value indicates greater mobility, with a value of zero indicating perfect immobility. 17 Software Stata 11.0 was used for SFA estimations, panel unit root and stability analysis, whilst DEAP (Coelli et al., 1996) was used for DEA and related efficiency indicator estimations. 18 Data EU FADN data were used for the deliverable. Two sectors were considered, based on the Type of Farming (TF) variables A28 (one digit TF) and A29 (two digits TF): field crop farms (TF1) and dairy farms (TF41). The following variables were used for the empirical analysis (EU FADN database code in brackets): TO=Total value of Output in Euros (SE131) TL=Total labour input in Annual Working Units (AWU, 1 AWU corresponds to 2,200 hours) (SE010) UAA= Utilised Agricultural Area (UAA) in hectares (SE025) IC= Intermediate consumption in Euros (SE275) FA= Fixed assets in Euros (SE441). Efficiency was calculated with SFA and DEA with one single output (TO) and four inputs (TL, UAA, IC, FA). Allocative efficiency was calculated with input prices. Two prices were calculated with FADN data: Land price (LAND_PRICE) in Euros per hectare calculated as rentals paid in euros (SE375) divided by rented UAA in hectares (SE030) 1 Labour price (LAB_PRICE) in Euros per hired AWU calculated as wages paid in euros (SE370) divided by non-family labour in AWU (SE010 – SE015). Land price and labour price are thus specific to each farm each year. For those farms having no rented land, they were assigned the average of the land prices for the same TF, country and year. The same procedure was carried out regarding labour price. By contrast, prices for the two other inputs (intermediate consumption and fixed assets) are not available in the FADN database. Therefore, yearly price indices were retrieved from Eurostat: Intermediate consumption price index (INTCONS_IND) Capital price index (ASSETS_IND). These prices are thus not specific per farm, but farms in the same country and the same year have the same price. All variables in value were deflated by each country’s consumer price indices. Data source is the FADN database from 1990 to the latest available year (2006) in case of “old” Member States and 2004–2006 for “new” Member States. Inconsistent data and outliers were removed from the initial datasets. Some main information about sample size of each country is presented below. BELGIUM There are a total of 6065 farms in the sample, 1627 field crop and 4438 dairy farms. The yearly sample of field crop farms is between 90 and 107 farms, and the yearly number of dairy farms varies between 246 and 320 farms. ESTONIA 1 In the EU FADN database rentals (SE375) include rentals for rented land but also for other rented assets; therefore the land price considered here does not exactly represent price paid for rented land. However, we assume that the difference does not crucially affect the efficiency results. 19 The analysed sample consisted of 973 farms: 505 field crop farms and 468 dairy farms. The number of field crop farms in the sample varied from 165 to 173 and the dairy farms from 152 to 160 over the years of the study. FRANCE The French total sample is 53378 farms, of which there are 32874 field crop and 20504 dairy farms. Yearly sample for field crop farms ranges between 1820 and 2067, for dairy farms between 966 and 1491. GERMANY The analysed sample consisted of 48845 farms: 20052 field crop farms and 28493 dairy farms. The number of field crop farms in the sample varied from 788 to 1481 and the dairy farms from 1,498 to 1,880 over the years of the study. HUNGARY The analysed sample consisted of 3,147 farms: 2,859 field crop farms and 288 dairy farms. The number of field crop farms in the sample varied from 891 to 1,028 and the dairy farms from 90 to 102 over the years of the study. ITALY 100226 farms are in the Italian sample, 69021 field crop and 31205 dairy farms. Their yearly number varies between 3214 and 4544 for field crop and 920 to 2301 for dairy farms. THE NETHERLANDS There are a total of 11280 farms in the Dutch sample, 4236 field crop and 7044 dairy farms. Yearly observations range between 184 and 313 for field crop and 333 and 514 for dairy farms. SWEDEN The Swedish sample a total of 7345 observations, composed of 2983 field crop and 4362 dairy farms. Yearly observation numbers are between 165 and 297 for field crop farms and 312 to 386 for dairy farms. MERGED SAMPLE The merged sample of all participating countries totals 212302 observations, consisting of 122527 field crop and 89775 dairy farms. Yearly frequencies are not relevant since starting period varies between countries. Annex 1 contains the quantile distribution of the sample farms’ area. Taking a closer look on the data a quite clear concentration process can be seen in all countries and in most of the quintiles. This process was even stronger in the dairy sector. Detailed descriptive statistics of the variables employed are presented in the annexes 2 and 3. To assess sample farm size changes between the start period (1990 except Hungary, Estonia and Sweden) and the end period (2006), tables 2., 3., and 4. Compare the respective means of farms per country, along with the Gini coefficient, measuring the concentration index. Farm size is measured in Utilised Agricultural Area (UAA) for both field crop and dairy farms. In addition, size of dairy farms is also assessed using livestock numbers. 20 Table 2. Descriptive statistics and concentration index of field crop farms (UAA) Field Utilised Agricultural Area Crop start period end period mean Gini coefficient mean Gini coefficient Belgium 54.00 0.2975 73.87 0.3159 Estonia 230.11 0.4754 240.27 0.4824 France 80.89 0.3436 135.88 0.3323 Germany 47.11 0.3501 252.02 0.6358 Hungary 255.45 0.6671 240.05 0.6360 Italy 19.61 0.5081 50.96 0.6503 Netherlands 62.34 0.3220 82.81 0.3684 Sweden 83.61 0.2939 120.19 0.4515 Source: authors’ calculations Table 3. Descriptive statistics and concentration index of dairy farms (UAA) Dairy Utilised Agricultural Area Starting period End period mean Gini coefficient mean Gini coefficient Belgium 33.97 0.2739 50.95 0.2651 Estonia 204.22 0.5538 211.89 0.5603 France 46.86 0.2616 81.43 0.2786 Germany 38.72 0.2609 113.90 0.5716 Hungary 239.25 0.6981 270.66 0.7247 Italy 20.45 0.5126 43.66 0.5349 Netherlands 32.92 0.2927 51.55 0.3041 Sweden 40.62 0.2728 84.06 0.4076 Source: authors’ calculations Table 4. Descriptive statistics and concentration index of dairy farms (livestock units) Milk Livestock unit Starting period End period mean Gini coefficient mean Gini coefficient Belgium 83.59 0.2818 95.94 0.2510 Estonia 84.53 0.5913 97.42 0.5976 France 60.55 0.2546 90.32 0.2940 Germany 64.44 0.2740 136.58 0.4993 Hungary 234.69 0.6755 222.83 0.6867 Italy 35.54 0.4623 100.11 0.5491 Netherlands 106.99 0.2967 127.80 0.3216 Sweden 43.86 0.2795 80.22 0.4274 Source: authors’ calculations 21 Tables 2 and 3 show an obvious concentration process happened in all analysed countries during the period. With the exception of Hungary, sample means of farm size for all countries do increase regardless of the sector or farm size measurement used. In some countries, average sample mean increased dramatically (e.g. field crop farm size in Germany increased fivefold, Italian field crop and dairy farm sizes trebled, Swedish, French field crop farm sizes doubled). In both tables the second column for both the starting and end period presents the Gini concentration index. The coefficient measures the inequality of a distribution, its value ranging between 0 (total equality) and 1 (maximum inequality). Generally the concentration index also increases between the start and end periods, but by far not as dramatically as farm size means. In Belgium, despite the increasing sample size mean of dairy farms, the concentration index actually decreased. The highest sample size means and concentration indices are reported for the New Member States, Hungary and Estonia. With the exception of these two countries however, interestingly, a higher sample size mean does not translate into a higher concentration index. 22 Results Technical efficiency analysis With different databases per country and sector, it is practically impossible to run ML efficiency estimations using a common functional form and distributional assumption for all frontiers when using SFA. There are two issues that can arise with frontier estimations that necessitate country and sector specific specifications. First, there is the problem of no-convergence of the ML estimation algorithm, and second, some models may result in no inefficiency term, meaning that the deviation from the frontier is only due to the random error ν i (the consequence is that all farms are located on the frontier, i.e. TE scores close to 1). Therefore a pragmatic, parsimonious to general estimation strategy has been adopted as follows: • Try Cobb-Douglas functional form → then try Translog • Try with half-normal distribution → then try exponential → then try truncated- normal • Try with unscaled variable → then try scaled variables (to help achieve algorithm convergence). Table 5 and 6 present the functional forms, distributional assumptions and weather input and output variables were scaled or not during the SFA estimations. Table 5. SFA model specifications for field crop farms Functional form Distributional assumptions Scaled Belgium Cobb-Douglas half-normal unscaled Estonia Cobb-Douglas half-normal unscaled France Cobb-Douglas half-normal unscaled Germany Cobb-Douglas half-normal unscaled Hungary Cobb-Douglas half-normal unscaled Italy Cobb-Douglas half-normal unscaled Netherlands TRANSLOG half-normal scaled Sweden TRANSLOG exponential scaled Source: authors’ calculations Annex 4 presents the estimated TE scores per country, sector and their respective descriptive statistics. Figures 1 presents the TE scores for field crop farms computed with SFA and DEA methods respectively. Figures 2 shows technical efficiency scores for dairy farms computed with SFA and DEA respectively. 23 Table 6. SFA model specifications for dairy farms Functional form Distributional assumptions Scaled Belgium Cobb-Douglas exponential unscaled Estonia Cobb-Douglas exponential unscaled France Cobb-Douglas exponential unscaled Germany Cobb-Douglas half-normal unscaled Hungary Cobb-Douglas half-normal unscaled Italy Cobb-Douglas exponential unscaled Netherlands TRANSLOG half-normal scaled Sweden TRANSLOG exponential scaled Source: authors’ calculations DEA estimates are generally lower than SFA estimates. Despite the differences between TE scores estimated with SFA and DEA, the relative position of countries is mostly the same. Notable exceptions are Italian dairy farms, which are located in the top of SFA estimations (figure 2 left) whilst being the lowest ranking when DEA was applied (figure 2 right). Results are plausible, when mean technical efficiency scores are computed they are largely in line with results obtained by previous studies. Some examples confirm this. Zhu and Oude Lansink (2010) employ the longest timespan in their research (see table 1), and focus on several of the countries represented in this deliverable, this paper may be used as a benchmark to assess our results. For German crop farms, average TE score obtained was 0.64, versus 0.48 (DEA) and 0.78 (SFA) computed in this study. Brümmer et al. (2002) report an average TE score of 0.95 for specialised German (SchleswigHolstein) dairy farms, against 0.84 obtained in this paper, also using parametric methods. For the Netherlands, Zhu and Oude Lansink (2010) report a mean TE score of 0.76, versus 0.90 (SFA) or 0.62 (DEA) in this research. For Dutch dairy farms, Brümmer et al. (2002) present an average TE score of 0.89, we have obtained 0.88 (SFA). Swedish crop farms average TE score was estimated to be 0.71, estimations using same method within this deliverable report 0.77. For French dairy sector, average TE score obtained with DEA in this research was 0.60, Fogarasi and Latruffe (2009) computed 0.76 on a shorter time-span. Barnes et al. (2010) obtained an average TE score of 0.76 using SFA, comparable with 0.74 estimated in this deliverable with the same method. 24 Figure 1. Technical efficiency scores for field crop farms (SFA/DEA) 0,95 0,9 0,8 0,7 DEA scores SFA scores 0,9 0,85 0,8 0,6 0,5 0,4 0,3 0,75 0,2 0,7 19 90 19 91 19 92 19 93 19 94 19 95 19 96 19 97 19 98 19 99 20 00 20 01 20 02 20 03 20 04 20 05 20 06 19 90 19 91 19 92 19 93 19 94 19 95 19 96 19 97 19 98 19 99 20 00 20 01 20 02 20 03 20 04 20 05 20 06 0,1 Belgium Estonia France Germany Belgium Estonia France Germany Hungary Italy The Netherlands Sweden Hungary Italy The Netherlands Sweden Figure 2. Technical efficiency scores for dairy farms (SFA/DEA) 0,95 0,8 0,75 0,7 DEA scores 0,85 0,65 0,6 0,55 0,5 0,45 0,8 0,4 0,35 0,75 0,3 19 90 19 91 19 92 19 93 19 94 19 95 19 96 19 97 19 98 19 99 20 00 20 01 20 02 20 03 20 04 20 05 20 06 19 90 19 91 19 92 19 93 19 94 19 95 19 96 19 97 19 98 19 99 20 00 20 01 20 02 20 03 20 04 20 05 20 06 SFA scores 0,9 Belgium Estonia France Germany Belgium Estonia France Germany Hungary Italy The Netherlands Sweden Hungary Italy The Netherlands Sweden 25 OLS on time trend With simple visual inspection of the efficiency estimation figures, it is difficult to determine whether on long run average per country efficiency scores increase or decrease. We have therefore analysed this issue econometrically by regressing with OLS the TE scores for each sector and each country (for all years pooled together) on a single explanatory variable: the time trend. Table 7 presents the estimated coefficients of per country regressions of efficiency scores on an intercept and time trend as explanatory variable. Table 7. OLS regression of efficiency scores on a time trend; coefficients’ value and significance for the time trend in each country’s and TF’s regression DEA SFA Field Crop Dairy Field Crop Dairy Belgium -0.009*** 0.001 -0.003*** -0.002*** France -0.005 -0.002 -0.007*** -0.004*** Germany -0.020** -0.005 -0.005*** -0.003*** Italy -0.038*** -0.011** -0.003*** -0.001** Netherlands -0.014** -0.007*** -0.002*** -0.005* Sweden -0.001 0.005* -0.005** -0.007*** Note: ***, **, * significant on 1, 5 and 10% respectively. Source: authors’ calculations Significant coefficients are small and negative across regressions, suggesting a decreasing average technical efficiency score for each country and sector included in the analysis. For France, when the dependent variable was computed with DEA, the time trend variable is not significant for either field crop or dairy farms. With SFA, all time trend coefficients are significantly negative in the six countries and the two sectors included in the regression. The regressions were not performed for New Member States since their sample covers only 3 years. 26 Stability Analysis Following the technique outlined in the methodology section, figures 3 to 10 present the results of the stability analysis for Belgium, Estonia, France, Germany, Hungary, Italy, The Netherlands and Sweden respectively. For each country, left hand graphs depict field crop, whilst right hand side graphs represent dairy farms. Simple visual inspection suggests a surprising stability of results across countries and sectors. Table 8 presents the mean values of the percentage of farms in consecutive years that remain in the same tercile, along those increasing or decreasing their respective terciles. Table 8. Stability analysis results: percentage of farms in the same tercile during two consecutive years (averages for each country and sector) Field Crop increase remain Dairy decrease increase remain decrease Belgium 0.20 0.61 0.19 0.16 0.66 0.17 Estonia 0.26 0.46 0.28 0.28 0.46 0.26 France 0.19 0.61 0.20 0.20 0.59 0.20 Germany 0.20 0.61 0.19 0.21 0.59 0.20 Hungary 0.26 0.48 0.26 0.26 0.44 0.29 Italy 0.20 0.59 0.21 0.20 0.58 0.22 0.20 0.58 0.21 0.17 0.65 0.18 0.18 0.65 0.17 0.21 0.58 0.21 Netherlands Sweden Source: authors’ calculations As suggested earlier, results are surprisingly stable: about 60% of all farms remain in the same tercile two consecutive years, whilst about 15-20% of farms decrease and increase their performance moving down or up a tercile. Results obtained in this section are in line with those of Barnes et al. (2010) for crop and dairy farming in England, Scotland, Wales and Northern Ireland. 27 Figure 3. Tercile stability analysis for Belgian field crop and dairy farms Figure 4. Tercile stability analysis for Estonian field crop and dairy farms 28 Figure 5. Tercile stability analysis for French field crop and dairy farms Figure 6. Tercile stability analysis for German field crop and dairy farms 29 Figure 7. Tercile stability analysis for Hungarian field crop and dairy farms Figure 8. Tercile stability analysis for Italian field crop and dairy farms 30 Figure 9. Tercile stability analysis for Dutch field crop and dairy farms Figure 10. Tercile stability analysis for Swedish field crop and dairy farms 31 Table 9. Average change in technical efficiencies for field crop farms depending on their tercile movement Belgium Estonia France Germany tercile 1 0.224 0.150 0.222 0.243 tercile 2 0.174 0.133 0.164 tercile 3 0.208 0.173 0.222 Hungary Italy Netherlands Sweden 0.173 0.211 0.226 0.226 0.169 0.134 0.160 0.155 0.181 0.202 0.171 0.215 0.201 0.240 Farms remaining each year Farms increasing each year tercile 2-1 0.081 0.093 0.082 0.083 0.100 0.089 0.084 0.078 tercile 3-1 0.030 0.058 0.022 0.025 0.057 0.031 0.026 0.017 tercile 3-2 0.091 0.115 0.089 0.084 0.103 0.083 0.094 0.083 tercile 1-2 0.076 0.102 0.086 0.088 0.103 0.091 0.087 0.082 tercile 1-3 0.035 0.053 0.023 0.022 0.060 0.031 0.030 0.013 tercile 2-3 0.082 0.124 0.089 0.084 0.099 0.089 0.097 0.081 Farms decreasing each year Source: authors’ calculations On average, 15% (Estonia) to 24% (Germany) of field crop farms remained in the top tercile each year, 13% (Estonia and Hungary) to 17% (Belgium, Germany) in the middle tercile and 17% (Estonia, Hungary) to 22% (France) in the lower tercile (table 9). It is probably more interesting the percentage of farms that changed their terciles over the year. An average of 10% (France, Germany) to 15% (Estonia, Hungary) improved their performance by shifting into a higher (2 to 1 or 3 to 1) tercile, whilst almost the same, on average 10% (France) to 16% (Hungary) fell from the top or middle tercile to the lowest. Table 10. Average change in technical efficiencies for dairy farms depending on their tercile movement Belgium Estonia France Germany tercile 1 0.244 0.161 0.090 0.205 tercile 2 0.179 0.127 0.060 tercile 3 0.240 0.172 0.105 Hungary Italy Netherlands Sweden 0.140 0.221 0.239 0.213 0.159 0.104 0.157 0.178 0.160 0.225 0.201 0.200 0.236 0.209 Farms remaining each year Farms increasing each year tercile 2-1 0.072 0.109 0.086 0.086 0.140 0.096 0.074 0.079 tercile 3-1 0.015 0.071 0.027 0.025 0.050 0.028 0.015 0.030 tercile 3-2 0.077 0.105 0.094 0.090 0.073 0.084 0.078 0.096 tercile 1-2 0.077 0.090 0.086 0.092 0.161 0.095 0.081 0.082 tercile 1-3 0.012 0.060 0.026 0.027 0.029 0.033 0.015 0.032 tercile 2-3 0.085 0.105 0.092 0.092 0.102 0.086 0.084 0.099 Farms decreasing each year Source: authors’ calculations 32 For dairy farm analysis (table 10), an average of 9% (France) to 24% (Belgium) remained in the top, 6% (France) to 18% (Belgium) in the middle and 10% (France) to 24% (Belgium) in the lower tercile over one year period. As for field crop farms, it is more of an interest to comment the percentage of farms improving or worsening their positions over the period. On average 9% (Belgium) to 19% (Estonia, Hungary) improved their technical efficiency scores by moving up one or two terciles, whilst a similar number, 9% (Belgium) to 19% (Hungary) fell from the middle or highest tercile to the lowest. It is interesting to note, that for both field crop and dairy farms, New Member States (Estonia and Hungary) register the highest average percentage of farms either dramatically increasing or decreasing their terciles, suggesting a highly unstable yearly performance. These countries also register the lowest percentages of farms that are stable in the same tercile during the year. The mean of yearly mobility indexes, M1 and M2 (see equations 14 and 15), for the Old Member States are presented in table 11. For both indices a higher value indicates greater mobility, whilst a value close to zero indicates perfect immobility. Table 11. Means of M1 and M2 mobility indices for field crop and dairy farms Field Crop Belgium Estonia France Germany Hungary Italy Netherlands Sweden Dairy M1 M2 M1 M2 0.59 0.82 0.50 0.79 0.81 0.99 0.81 0.98 0.59 0.86 0.61 0.89 0.58 0.85 0.62 0.89 0.78 0.97 0.83 0.97 0.62 0.88 0.63 0.89 0.63 0.86 0.52 0.80 0.52 0.81 0.63 0.87 Source: authors’ calculations Index means are remarkably similar across countries in this research. It is important to notice, that the M2 index ranks countries in the same way as M1 does, implying consistency of results. M1 ranges from 0.52 to 0.63 (0.50 to 0.63) for field crop (dairy) farms, and M2 from 0.81 to 0.88 (0.79 to 0.89) for field crop (dairy) farms indicating a similar degree of mobility for the Old Member States represented here. M1 and M2 indices are significantly higher for New Member States (Estonia and Hungary). M2 reaches 0.97 and 0.99 for both sectors in Hungary and Estonia, suggesting higher mobility of SFA scores throughout the entire distribution. For field crop farming, the lowest mobility scores are recorded for Sweden, whilst for dairy farms in Belgium and Netherlands. 33 Total Factor Productivity Analysis Detailed results of Total Factor Productivity Change and its driving components are in the Annexes 9 to 17. Figures 11 to 18 present the evolution of Total Factor Productivity Change (TFPC), Technical Change (TC), Technical Efficiency Change (TEC), Scale Efficiency Change (SEC) and Allocative Efficiency Change (AEC) computed with non-parametric methods for field crop and dairy farms. Except for the increased volatility of indicators, figures presented do not reveal much further information, or indeed common patterns. To get a picture about the volatility of indicators, tables 12 and 13 present the coefficient of variation for TFPC and its components for the field crop and dairy farms. Table 12. Coefficient of variation for Total Factor Productivity Changes and its components for field crop farms TFPC TC 0.593 0.054 0.053 0.044 0.150 0.228 0.228 Belgium France Germany Italy Netherlands Sweden Pooled TEC 0.236 0.130 0.181 0.267 0.376 0.102 0.102 SEC 0.152 0.104 0.216 0.260 0.196 0.125 0.125 AEC 0.093 0.084 0.154 0.226 0.086 0.083 0.083 0.132 0.294 0.454 0.180 0.298 0.174 0.174 Source: authors’ calculations Table 13. Coefficient of variation for Total Factor Productivity Changes and its components for dairy farms TFPC Belgium France Germany Italy Netherlands Sweden Pooled TC 0.044 0.026 0.043 0.025 0.126 0.077 0.093 TEC 0.064 0.068 0.181 0.078 0.079 0.051 0.101 SEC 0.046 0.056 0.175 0.080 0.063 0.083 0.094 AEC 0.034 0.037 0.122 0.045 0.042 0.064 0.064 0.149 0.478 0.221 0.141 0.583 0.131 0.361 Source: authors’ calculations There is no obvious common trend. The highest volatility is recorded for Belgium field crop farms’ TFPC, lowest for French dairy farms’ TFPC. Field crop farm indicators generally present a significantly higher volatility than dairy farms. Notable exception is the AEC variable that (a) has much higher volatility in the case of dairy farms, (b) has the highest volatility of all indicators within dairy farms. 34 Figure 11. TFPC and its components for Belgium field crop and dairy farms Figure 12. TFPC and its components for Italian field crop and dairy farms 35 Figure 13. TFPC and its components for French field crop and dairy farms Figure 14. TFPC and its components for German field crop and dairy farms 36 Figure 15. TFPC and its components for Hungarian field crop and dairy farms Figure 16. TFPC and its components for Estonian field crop and dairy farms 37 Figure 17. TFPC and its components for Dutch field crop and dairy farms Figure 18. TFPC and its components for Swedish field crop and dairy farms 38 Graphs 11 to 18 above do not suggest any specific trend of increasing or decreasing TFPC change over time. Table 14 presents an OLS regression analysis of TFPC scores over an intercept and time trend for each country and each sector. Results do not help much on the interpretation of results. With the exception of Italian field crop farms, where a weak positive trend can be observed, the time coefficient is not significant in any other regression. Table 14. Results of OLS regression of TFPC on a time trend DEA Field Dairy Crop Belgium 0.009 -0.001 France 0.004 -0.001 Germany 0.002 0.002 Italy 0.004** 0.001 Netherlands 0.002 0.005 Sweden -0.016 0.001 Note: ** marks 5% significance level Source: authors’ calculations As indicated in the methodology section, panel unit root tests may provide information about whether TFPC and its components have the tendency to converge, or contrary, to diverge between countries. Table 15 and 16 present the panel unit root analysis results for field crop and dairy farms respectively. Table 15. Panel unit root analysis for field crop farms Exogenous variables: Individual effects Levin, Lin & Chu t Im, Pesaran and Shin W-stat ADF - Fisher Chi-square PP - Fisher Chi-square TFPC TC TEC SEC 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Exogenous variables: Individual effects, individual linear trends 1.00 0.00 0.00 0.00 Levin, Lin & Chu t 0.00 0.00 0.00 0.00 Im, Pesaran and Shin W-stat 0.00 0.00 0.00 0.00 ADF - Fisher Chi-square 0.00 0.00 0.00 0.00 PP - Fisher Chi-square Source: authors’ calculations AEC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Table 16. Panel unit root analysis for dairy farms Exogenous variables: Individual effects TFPC TC TEC SEC 0.00 0.00 0.00 0.00 Levin, Lin & Chu t 0.00 0.00 0.00 0.00 Im, Pesaran and Shin W-stat 0.00 0.00 0.00 0.00 ADF - Fisher Chi-square 0.00 0.00 0.00 0.00 PP - Fisher Chi-square Exogenous variables: Individual effects, individual linear trends 0.00 0.00 0.00 0.00 Levin, Lin & Chu t 0.00 0.00 0.00 0.00 Im, Pesaran and Shin W-stat 0.00 0.00 0.00 0.00 ADF - Fisher Chi-square 0.00 0.00 0.00 0.00 PP - Fisher Chi-square AEC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Source: authors’ calculations All unit root tests applied here have non-stationarity (i.e. unit root) as their null hypothesis. With the exception of the Levin, Lin & Chu t-test for TFPC variable for field crop farms, the panel unit root hypothesis is strongly rejected by all tests for all variables, concluding stationary processes. It follows, that country estimates of TFPC and its components do not diverge over time. To evaluate more formally the possible factors influencing TFPC we apply panel model estimations for Old EU Member States. We need to exclude Estonia and Hungary from the sample due to short time span. We regress TFPC on its components: TC, TEC, SEC, AEC (model 1). In addition, we employ two other variables: time trend (model 2), and a reform dummy which equal to one in 1992 and 2000, otherwise zero (model 3). We applied both random and fixed effects models, but the Hausman test always favours the fixed effect models at 5 per cent. Our results are not really straightforward for field crop farms (table 17). Except for technical change, all other variables are insignificant. In line with our a priori expectations, technical change positively influences the total productivity changes. Interestingly, the CAP reform dummy variable is not significant. 40 Table 17. Panel estimations for total productivity changes for field crop farms (1) (2) (3) 0.509** 0.626*** 0.657*** TC 0.203 0.518 0.643 TEC 0.260 0.002 -0.130 SEC -0.112 -0.073 -0.077 AEC 0.007 Time -0.007 CAP Reform 0.103 -0.186 -0.137 Constant 90 90 90 N 2 0.0735 0.0785 0.0681 R 0.000 0.000 Hausman test (p value) 0.000 Sources: own calculations Estimations show promising results for the milk farms (Table 18). Technical change, technical efficiency change and allocative efficiency change have positive impact on the total productivity change. Similarly to crop farms, additional variables as time trend and CAP reform are insignificant. Table 18. Panel estimations for total productivity changes for milk farms (1) (2) (3) TC 0.678*** 0.683*** 0.648*** TEC 0.984*** 0.967*** 0.950*** SEC -0.269 -0.246 -0.271 AEC 0.044*** 0.043*** 0.039** Time 0.001 CAP Reform 0.022 constant -0.489* -0.509* -0.420 N 90 90 90 2 R 0.0508 0.0522 Hausman test (p value) 0.0927 0.0063 0.0049 Sources: own calculations 41 Conclusions The purpose of this deliverable is to present and analyse various efficiency indicators for countries included in the FACEPA project, Belgium, Estonia, France, Germany, Hungary, Italy, The Netherlands and Sweden. The availability of long period datasets between 1990 and 2006, allows us to concentrate on the long time trends in technical efficiency especially in Old Member States. This study is the first which may provide a comprehensive overview on the development in farm level efficiency across eight European countries. Two main approaches developed over time for analysing technical efficiency in agriculture were used here. (1) The nonparametric data envelopment analysis (DEA); (2) the parametric stochastic frontier analysis (SFA). While the vast majority of empirical studies on technical efficiency in the agricultural sector mostly have utilized only one method to estimate their efficiencies, we apply both methodological approaches to measure efficiency. In addition, most studies focus on the whole country’s agricultural sector, thus the comparative analysis of the technical efficiency is rather scarce. We take into account the relative importance of specific subsectors and rationale of compilation more homogeneous sample thus our study focuses on the field crops and dairy sector separately. The bulk of this deliverable presents the yearly country estimations for specialised field crop (TF1) and dairy (TF41) sectors of the following efficiency indicators reported in Annexes 4 to 17: Technical Efficiency, Scale Efficiency, Allocative Efficiency, Technical Efficiency Change, Scale Efficiency Change, Allocative Efficiency Change, Technological Change and Productivity Change. FADN data from 1990 to 2006 (for Sweden from 1995 to 2006) for Old Member States and 2004 to 2006 for the New Member States were used for the analysis. Technical and Allocative efficiency estimates were computed with both parametric (SFA) and non-parametric (DEA) methods, other indicators were calculated using DEA. Our main results are following. Generally, all countries have relatively high levels of mean efficiency ranging from 0.72 to 0.92 for both field crops and dairy farms. Interestingly majority of countries have better performance in dairy sectors in terms of higher levels of mean efficiency than in field crop production. This suggests that larger heterogeneity in terms of agricultural practices apply in crop farming than in dairy farming. This is contrary 42 to the intuition that livestock farming, which requires more human input than crop farming, would present a larger heterogeneity of human practices (this assumption was for example put forward by Curtiss 2000). However, an explanation may be that crop farming is more affected by land quality and climate conditions than livestock farming. Latruffe et al. (2009) have for example provided evidence of the role of climate conditions on farms’ technical efficiency. Input quality is not taken into account within our analysis, as it is impossible to find equivalent proxy across all countries. Therefore, lower efficiency in field crop sector than in dairy sector may in fact be due to different land quality, which may affect farms’ performance more than labour quality for example. A slightly decreasing trend of efficiency may be observed for all countries. Technical Efficiency estimates are largely in line with those obtained by previous studies. We investigate the issue of how relative performance of farms fluctuates in terms of technical efficiency over time. We may hypothesise that many poorly performed farms remaining inefficient and some farmers are performing always very efficiently. We can identify farms which are usually at the bottom or top of the efficiency ranking. However, the FADN data has an inherent problem for long time period analysis arising from its rotated panel nature, namely that not all the farms are observed for the whole period. So we need to calculate transition matrices in each consecutive year. Surprisingly stability analysis revealed that in average 60% of farms maintain their efficiency ranking in two consecutive years, whilst 20% improve and 20% worsen their positions for all countries. However, these ratios slightly fluctuate around these values for one year to next year. Mobility analysis ranks countries according to the mobility of SFA scores within the distribution. Farms in New Member States are more mobile than those in EU15. This may be due to the unstable economic conditions of farms in these countries, where e.g. inputs access is not always secured or is costly. The DEA estimation shows a similar declining trend on the development of technical efficiency over time except Swedish dairy sector increasing efficiency trend. We investigate the total productivity changes in two steps. First, we do not find a definite trend in total factor productivity changes. Second, we address the question whether total factor productivity changes converge or diverge over time. Using panel unit root tests our estimations reveals a convergence of productivity across old EU member countries during analysed period. Panel unit root tests also reject the divergent technical change, technical 43 efficiency change, scale efficiency change and allocative efficiency change null hypothesis across countries. Finally, we decompose the total factor productivity changes into its main elements. Total Factor Productivity Change analysis, is first done graphically, showing rather different behaviour of TFPC and its components across countries and sectors. Indicators are represented by high volatility, a trend analysis does not however produce conclusive results except for Italy. In addition, field crop farm indicators generally present a significantly higher volatility than dairy farms. Random effect panel regression of Total Factor Productivity Change on its components shows Technological Change as being the significant positive driver for crop farms, whilst technical efficiency change followed by technological change are the most important for dairy farms. In addition we do not find significant impacts on CAP reform in 1992 and 2000 on total productivity changes. This deliverable has highlighted the usefulness of FADN data in conducting a comparative analysis of farms’ performance across EU Member States. The FADN database enables to use homogenous variables and indicators across countries and over time. A few shortcomings of the database can also be underlined. Firstly, the rotating nature of the panel makes it difficult to perform a long term investigation. The samples’ changes imply that balanced panels over several years are too small to produce robust results. Therefore, we had to resort to balanced panels over two consecutive years only, limiting the possibility to follow the performance of the same farms over a long period and assess truly the effect of shocks such as CAP reforms. Secondly, the FADN database is too poor in terms of input prices. Regarding rentals, the variable includes both rentals for land and rentals for other assets (buildings, livestock), and therefore land price is difficult to assess. As for variable inputs, the absence of prices in the FADN database forces to use yearly price indices that are similar for all farms in each country, which reduces the information available in the calculations. 44 References Aigner, D., Lovell, C. and Schmidt, P. (1977) Formulation and estimation of stochastic production function models, Journal of Econometrics, 6, 21–37. Bakucs, Z., Latruffe, L., Fertő, I., Fogarasi. J. (2010). The impact of EU accession on farms’ technical efficiency in Hungary. Post-Communist Economies 22, (2), 165–175. Barnes, A.P., Revoredo-Giha, C., Sauer, J. Elliott, J. and Jones, G. (2010). A report on technical efficiency at the farm level 1989 to 2008. Report for Defra, London. Battese, G.E. and Coelli, T.J., (1992). Frontier production functions, technical efficiency and panel data: with application to paddy farmers in India. Journal of productivity analysis, 3 (1), 153–169. Battese, G. and T. Coelli (1995). “A model for technical inefficiency effects in a stochastic frontier production function for panel data”, Empirical Economics 20: 325-332. Battese, G. and Corra, G., (1977). Estimation of a production frontier model with the application of the pastoral zone of Eastern Australia. Australian journal of agricultural economics, 21 (3), 167–179. Bravo-Ureta, B.E., Solís, D., López, C.V.H.M., Maripani, J.F., Thiam, A., and Rivas, T. (2007). Technical efficiency in farming: a meta-regression analysis. Journal of Productivity Analysis, 27, 57-72 Brümmer, B., Glauben, T., Thijssen, G. (2002). Decomposition of productivity growth using distance functions: The case of dairy farm sin three European countries. American Journal of Agricultural Economics 84(3), 628-644. Caudill, B.S., Ford, J.M. and Gropper, D.M., (1995). Frontier estimation and firm-specific inefficiency measures in the presence of heteroscedasticity. Journal of business and economic statistics, 13 (1), 105–111. Coelli, T.J., D.S. P. Rao, C.J. O’Donnell and G.E. Battese (2005). “An introduction to Efficiency and productivity analysis.” Springer, USA Coelli, T., Perelman, S., Van Lierde (2006). CAP Reforms and Total Factor Productivity Growth in Belgian Agriculture: A Malmquist Index Approach. Contributed paper for presentation at the 26th Conference of the International Association of Agricultural Economists (IAAE) held on August 12-18 at the Gold Coast, Australia. Curtiss, J., 2002. Efficiency and structural changes in transition: a stochastic frontier analysis of Czech crop production. Institutional Change in Agriculture and Natural Resources Vol. 12. The Netherlands: Shaker Verlag. 45 Geweke, J., Marshall, R., and Zarkin, G. (1986). Mobility indices in continuous time Markov chains. Econometrica 54 (6): 1407-1423. Hansson, H. (2007). The links between management’s critical success factors and farm level economic performance on dairy farms in Sweden. Food Economics, Acta Agricult Scand C, 2007; 4: 77-88. Im, K. S., M. H. Pesaran, and Y. Shin. (2003). Testing for unit roots in heterogeneous panels. Journal of Econometrics 115: 53-74. Kodde, D.A. and Palm, F.C. (1986). Wald criteria for jointly testing equality and inequality restrictions. Econometrica, 54 (5) 1243-1248. Kumbhakar, S. C. and C. Lovell (2000), Stochastic Frontier Analysis, Cambridge University Press, Cambridge Kleinhanß, W., Murillo, C., San Juan, C., Sperlich, S. (2007). Efficiency, subsidies, and environmental adaptation of animal farming under CAP. Agricultural Economics 36 49–65. Larsen, K. (2010). Effects of machinery-sharing arrangements on farm efficiency: evidence from Sweden. Agricultural Economics 41 (2010) 497–506. Levin, A., C.-F. Lin, and C.-S. J. Chu. (2002). Unit root tests in panel data: Asymptotic and finite-sample properties. Journal of Econometrics 108: 1-24. Latruffe, L., Guyomard, H., Le Mouël, C. (2009). The role of public subsidies on farms’ managerial efficiency: An application of a five-stage approach to France. Working Paper SMART-LERECO 09-05, Rennes, France. Latruffe, L., and Fogarasi, J. (2009). Farm performance and support in Central and Western Europe: A comparison of Hungary and France. Working Paper SMART – LERECO N°0907 March 2009. Maddala, G. S. and Shaowen Wu (1999). A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test. Oxford Bulletin of Economics and Statistics, 61, 631652. Meeusen, W. and van den Broeck, J. (1977) Efficiency estimation from Cobb–Douglas production functions with composed error, International Economic Review, 18, 435–44. Shorrocks, A. (1978). The measurement of mobility. Econometrica, 46 (5): 1013-1024. Vasiliev, N., Astover, A., Mõtte, M., Matveev, E., Noormets, M., Endla Reintam, E., Hugo Roostalu, H. (2008). Efficiency of Estonian grain farms in 2000–2004. Agricultural and Food Science, 17., 31-40. Zhu., X. and Oude Lansink, A. (2010). Impact of CAP Subsidies on Technical Efficiency of Crop Farms in Germany, the Netherlands and Sweden. Journal of Agricultural Economics, 61, (3): 545–564 46 Annex 1 Quintile distribution of sample farms according to area in hectares Crop farms (TF 1) Mean Quintiles Start of the End of the period period BELGIUM Q1 1.899 3.744 Q2 13.667 22.842 Q3 23.944 40.060 Q4 37.691 59.971 Q5 66.505 106.533 ESTONIA Q1 25.843 27.179 Q2 64.823 67.462 Q3 113.643 118.739 Q4 206.577 217.458 Q5 613.707 708.010 FRANCE Q1 11.406 11.795 Q2 29.383 42.563 Q3 44.282 73.860 Q4 65.494 114.953 Q5 125.835 211.322 GERMANY Q1 10.428 9.935 Q2 23.457 34.784 Q3 32.965 58.442 Q4 44.875 96.461 Q5 74.178 604.002 HUNGARY Q1 22.478 24.320 Q2 56.547 59.738 Q3 101.165 105.905 Q4 188.587 198.948 Q5 911.343 815.989 ITALY Q1 2.376 2.273 Q2 5.553 6.522 Q3 9.074 13.281 Q4 15.295 27.954 Q5 50.263 122.099 THE NETHERLANDS Q1 1.166 1.179 Q2 8.101 5.876 Q3 19.906 19.490 Q4 35.269 41.034 Q5 74.570 98.826 SWEDEN Q1 19.675 22.634 Q2 33.703 47.414 Q3 45.010 70.443 Q4 60.592 105.279 Q5 112.837 245.062 Source: FADN database 47 Dairy farms (TF 41) Mean Start of the End of the period period 1.069 37.092 70.630 109.312 261.660 0.000 33.901 73.382 125.362 315.325 0.000 5.878 18.311 41.585 262.883 0.000 5.456 18.814 46.273 330.392 0.000 7.581 31.580 56.888 145.942 0.000 35.892 87.519 253.414 1.287 25.671 46.320 68.903 134.795 0.000 21.674 59.221 121.962 448.259 10.668 29.418 69.776 221.116 842.472 12.810 35.153 62.133 175.177 847.454 0 2.785 10.640 52.827 0 11.450 188.44 0.000 33.844 101.211 312.098 0.000 45.546 135.334 687.946 0.183 15.995 32.743 49.634 97.629 0.629 24.556 48.595 87.945 261.339 Annex 2 Descriptive statistics of variables used – first and last years of sample Crop farms (TF 1) Countries First year of sample Mean St. Dev. Min BELGIUM Total Output deflated (TO) 118,172 67,802 20,894 Utilised Agricultural Area (UAA) 54.00 29.39 5.18 Total Labour (TL) 1.47 0.64 0.46 Intermediate consumption deflated (IC) 53,664 30,294 8,570 Fixed Assets deflated (FA) 205,672 156,483 19,107 Land price deflated (PL) 155 40 65 Labour price deflated (PL) 11,422 3,327 2,942 Intermediate consumption price index 100 0 100 (PIC) Capital price index (PC) 100 0 100 ESTONIA Total Output deflated (TO) 69,556 71,093 4,329 Utilised Agricultural Area (UAA) 230.11 213.95 9.10 Total Labour (TL) 2.40 1.89 0.27 Intermediate consumption deflated (IC) 52,106 53,263 3,775 Fixed Assets deflated (FA) 159,346 190,892 188 Land price deflated (PL) 8 22 0 Labour price deflated (PL) 3,173 1,348 714 Intermediate consumption price index 100 0 100 (PIC) Capital price index (PC) 100 0 100 FRANCE Total Output deflated (TO) 109,611 76,576 8,667 Last year of sample St. Dev. Min Max Mean Max 337,157 169.37 4.96 170,436 745, 961 300 25,681 100 114,646 73.87 1.40 55,047 314,747 180 16,199 112 95,258 42.29 0.59 43,568 288,662 89 2,953 0 14,477 17.35 0.40 7,653 2,268 45 5,899 112 527,785 223.96 3.91 229,866 1,605,155 494 31,578 112 100 157 0 157 157 369,571 984.95 12.66 250,006 1,204,610 271 7,645 100 68,604 240.27 2.37 56,194 156,800 9 3,498 109 75,946 235.24 1.90 63,625 167,492 9 1,290 0 2,238 8.20 0.55 2,008 1,061 0 996 109 419,243 1,247.55 12.54 342,887 879,786 67 8,181 109 100 106 0 106 106 765,489 114,639 95,250 2,064 1,235,507 Utilised Agricultural Area (UAA) 80.89 53.77 1.40 435.00 135.88 Total Labour (TL) 1.52 0.82 0.76 12.55 1.84 Intermediate consumption deflated (IC) 53,410 35,812 5,518 345,301 73,920 Fixed Assets deflated (FA) 136,700 106,646 432 1,538,609 150,089 Land price deflated (PL) 110 68 0 1,104 107 Labour price deflated (PL) 14,346 5,713 1,058 53,540 14,154 Intermediate consumption price index 100 0 100 100 124 Capital price index (PC) 100 0 100 100 135 GERMANY Total Output deflated (TO) 91,084.40 67,661.11 11,366.00 475,584.00 229,618.10 Utilised Agricultural Area (UAA) 47.11 32.04 3.53 267.59 252.02 Total Labour (TL) 1.49 0.70 0.17 6.52 3.37 Intermediate consumption deflated (IC) 50,295.05 36,500.36 7,750.00 239,026.00 155,091.19 Fixed Assets deflated (FA) 300,327.56 282,800.77 2,239.00 3,094,287.00 690,661.40 Land price deflated (PL) 254.40 155.14 14.22 1,898.87 205.58 Labour price deflated (PL) 12,221.86 5,923.79 1,699.33 47,793.15 14,067.40 Intermediate consumption price index 100.00 0.00 100.00 100.00 127.10 (PIC) Capital price index (PC) 100.00 0.00 100.00 100.00 131.30 HUNGARY Total Output deflated (TO) 189,179 454,328 2,198 5,426,983 141,741 Utilised Agricultural Area (UAA) 255.45 500.9 5.07 5,078.00 240.05 Total Labour (TL) 4.34 10.18 0.01 97.4 4.05 Intermediate consumption deflated (IC) 122,299 280,757 2,685 3,276,464 100,238 Fixed Assets deflated (FA) 232,577 406,143 397 5,692,597 203,281 Land price deflated (PL) 49 41 0 503 53 Labour price deflated (PL) 4,848 2,322 0 18,919 4,718 Intermediate consumption price index 100 0 100 100 105 (PIC) 49 84.87 1.35 51,121 134,145 96 5,159 0 0 2.17 0.76 3,707 19 0 569 124 135 705.63 21.81 484,101 1,449,649 2,942 96,520 124 135 429,410.25 3,327.00 470.17 3.37 6.33 1.00 297,504.53 7,289.00 719,602.79 368.00 406.67 1.46 6,374.18 2,071.15 0.00 127.10 6,610,749.00 5,196.70 95.50 4,416,859.00 9,250,715.00 14,274.86 47,380.12 127.10 0.00 131.30 131.30 276,075 426.50 9 199,847 299,100 39 1,829 492 3.68 0.01 2,080 225 0 0 2,217,689 3,681.00 100.09 1,657,006 2,973,876 257 15,284 0 105 105 Capital price index (PC) ITALY Total Output deflated (TO) Utilised Agricultural Area (UAA) Total Labour (TL) Intermediate consumption deflated (IC) Fixed Assets deflated (FA) Land price deflated (PL) Labour price deflated (PL) Intermediate consumption price index (PIC) Capital price index (PC) THE NETHERLANDS Total Output deflated (TO) Utilised Agricultural Area (UAA) Total Labour (TL) Intermediate consumption deflated (IC) Fixed Assets deflated (FA) Land price deflated (PL) Labour price deflated (PL) Intermediate consumption price index (PIC) Capital price index (PC) SWEDEN Total Output deflated (TO) Utilised Agricultural Area (UAA) Total Labour (TL) Intermediate consumption deflated (IC) Fixed Assets deflated (FA) 100 0 100 100 111 0 111 111 35,444 19.61 1.66 13,992 197,325 216 12,063 100 44,944 24.48 1.00 18,733 247,516 163 1,932 0 263 0.24 0.04 417 53 0 2,634 100 570,335 378.00 11.58 211,490 3,086,357 3,942 25,032 100 48,070 50.96 1.74 23,549 440,172 163 10,255 140 117,616 101.26 2.60 62,006 1,462,303 138 1,883 0 325 0.50 0.06 244 12 0 1,206 140 2,467,585 1,846.87 45.76 1,225,770 35,561,353 3,078 26,348 140 100 0 100 100 168 0 168 168 182,102 62.34 1.78 79,091 598,801 399 18,155 100 122,456 38.23 0.96 48,424 542,053 224 5,961 0 22,930 13.37 0.10 15,656 8,452 68 2,402 100 639,138 222.97 7.93 260,114 3,443,725 2,324 34,625 100 238,599 82.81 1.95 110,104 1,330,608 632 19,775 131 202,012 56.68 1.50 83,121 1,079,767 667 10,029 0 10,989 11.20 0.05 7,732 30,458 0 1,127 131 1,124,646 302.45 12.18 493,261 5,728,201 5,145 87,489 131 100 0 100 100 136 0 136 136 64,946 83,61 1,01 43,485 277,539 50,936 46,55 0,52 27,375 219,414 3,055 14,00 0,09 5,547 13,536 307,021 275,60 2,51 213,335 1,249,065 98,799 120,19 1,16 73,111 576,479 126,077 124,52 0,89 83,018 560,391 5,781 16,97 0,11 8,322 2,389 694,016 890,50 5,53 523,867 3,568,796 50 Land price deflated (PL) Labour price deflated (PL) Intermediate consumption price index (PIC) Capital price index (PC) 133 25,839 100 128 3,651 0 12 2,099 100 1541 37,961 100 166 22,312 128 113 4,180 0 7 1,552 128 941 38,312 128 100 0 100 100 132 0 132 132 Source: authors’ calculations 51 Annex 3 Descriptive statistics of variables used – first and last years of sample Dairy farms (TF4 1) Countries Mean BELGIUM Total Output deflated (TO) 98,966 Utilised Agricultural Area (UAA) 33.97 Total Labour (TL) 1.66 Intermediate consumption deflated (IC) 45,953 Fixed Assets deflated (FA) 215,187 First year of sample St. Dev. Min Max Mean Last year of sample St. Dev. Min 52,406 17.61 0.47 27,422 128,066 21,241 6.20 0.80 10,025 23,337 297,678 107.16 3.78 146,875 642,098 95,979 50.95 1.62 49,269 354,465 43,768 25.66 0.52 24,011 196,105 18,352 10.38 1.00 7,047 50,327 Land price deflated (PL) Labour price deflated (PL) Intermediate consumption price index (PIC) Capital price index (PC) ESTONIA Total Output deflated (TO) 127 11,649 100 100 51 2,230 0 0 32 3,074 100 100 306 23,594 100 100 157 16,645 112 157 96 2,702 0 0 26 6,304 112 157 105,273 182,927 9,368 124,488 203,379 6,868 Utilised Agricultural Area (UAA) Total Labour (TL) Intermediate consumption deflated (IC) Fixed Assets deflated (FA) 204.22 5.03 66,748 169,473 271.27 7.52 98,512 366,737 15.25 1.00 5,463 9,051 211.89 5.74 90,266 215,198 277.85 8.58 144,108 363,710 17.47 1.00 5,469 1,164 5 3,414 100 100 8 1,364 0 0 0 776 100 100 1,455,08 5 1,949.06 51.86 629,469 2,873,49 1 67 6,635 100 100 7 4,092 109 106 7 1,507 0 0 0 992 109 106 Land price deflated (PL) Labour price deflated (PL) Intermediate consumption price index (PIC) Capital price index (PC) 52 Max 246,730 158.46 3.98 142,025 1,066,67 5 590 37,132 112 157 1,353,18 2 1,840.70 52.00 909,802 2,955,23 9 45 7,842 109 106 FRANCE Total Output deflated (TO) Utilised Agricultural Area (UAA) Total Labour (TL) Intermediate consumption deflated (IC) Fixed Assets deflated (FA) Land price deflated (PL) Labour price deflated (PL) Intermediate consumption price index (PIC) Capital price index (PC) GERMANY Total Output deflated (TO) Utilised Agricultural Area (UAA) Total Labour (TL) Intermediate consumption deflated (IC) Fixed Assets deflated (FA) Land price deflated (PL) Labour price deflated (PL) Intermediate consumption price index (PIC) Capital price index (PC) HUNGARY Total Output deflated (TO) Utilised Agricultural Area (UAA) Total Labour (TL) Intermediate consumption deflated (IC) Fixed Assets deflated (FA) 79,205 46.86 1.62 43,307 129,114 151 10,552 42,959 23.54 0.54 24,898 67,838 1,752 5,215 3,397 9.00 0.9 4,731 8,647 0 640 313,545 190.00 4.64 181,621 716,539 65,789 34,532 100 100 93,200 81.43 1.83 61,061 182,706 89 11,123 124 135 54,619 42.25 0.87 34,789 110,699 47 4,699 0 0 7,647 8.15 1.0 9,104 19,955 0 1,789 124 135 100 100 0 0 100 100 86,592 44,248 38.72 1.64 7,440 297,251 187,568 395,986 9,769 18.85 0.55 5.46 0.32 177.66 5.01 113.90 3.08 244.68 7.36 11.38 1.00 47,387 24,750 6,651 205,401 123,123 271,364 7,494 268,619 146,617 23,783 523,228 490,516 10,730 217 10,731 100 100 195 5,679 0 0 14 1,535 100 100 1,374,88 6 3 647 44,463 100 100 200 14,258 127 131 190 6,794 0 0 2 1,775 127 131 5,113,70 8 3,011.62 102.00 3,557,39 2 5,230,29 1 2 851 47,374 127 131 399,165 239.25 11.34 331,305 488,580 610,083 402.78 17.51 521,984 711,646 3,571 0.00 0.10 3,197 6,951 2,582,967 2,138.49 76.30 2,028,763 3,429,804 381,994 270.66 11.34 280,582 432,007 631,126 515.61 19.74 494,461 614,096 4,115 0.00 0.32 2,442 5,105 3,045,291 3,059.36 112.17 2,151,636 3,125,486 53 407,519 322.98 8.18 239,970 821,970 564 33,769 124 135 Land price deflated (PL) Labour price deflated (PL) Intermediate consumption price index (PIC) Capital price index (PC) ITALY Total Output deflated (TO) 59 4,777 100 100 97 1,944 0 0 0 2,282 100 100 684 9,100 100 100 306 4,794 105 111 2,309 1,802 0 0 0 2,649 105 111 21,081 10,628 105 111 77,154 87,420 1,970 139,789 189,013 4,627 Utilised Agricultural Area (UAA) Total Labour (TL) Intermediate consumption deflated (IC) 20.45 2.09 38,581.36 36.33 0.93 45,991 0.10 0.39 1,975 1,018,51 8 588.00 9.62 591,180 43.66 2.54 75,832 54.16 1.87 114,350 0.59 0.44 1,666 Fixed Assets deflated (FA) 235,991.3 7 154.16 10,864 100 100 217.445 5,924 462,126 687,046 5,628 114 1,928 0 0 0 2,395 100 100 2,332,02 4 1,544 37,908 100 100 169 10,618 140 168 183 1,814 0 0 0 1,649 140 168 1,659,24 9 490.31 21.33 1,384,77 9 7,711,38 7 2,717 23,529 140 168 159,590 32.92 1.69 74,418 616,962 90,748 17.98 0.57 43,438 362,534 28,814 4.93 0.60 10,706 40,049 1,902 6.21 0.66 11,090 69,400 690 6,403 0 0 14 2,611 100 100 166,326 51.55 1.72 90,430 1,554,44 7 525 19,465 131 136 107,554 30.04 0.65 53,675 978,106 364 18,009 100 100 615,757 132.50 4.11 293,802 2,332,10 2 15,105 66,046 100 100 604 8,989 0 0 15 1,400 131 136 Land price deflated (PL) Labour price deflated (PL) Intermediate consumption price index (PIC) Capital price index (PC) THE NETHERLANDS Total Output deflated (TO) Utilised Agricultural Area (UAA) Total Labour (TL) Intermediate consumption deflated (IC) Fixed Assets deflated (FA) Land price deflated (PL) Labour price deflated (PL) Intermediate consumption price index (PIC) Capital price index (PC) SWEDEN 54 802,786 221.04 4.54 427,527 6,774,70 8 6,570 90,505 131 136 Total Output deflated (TO) Utilised Agricultural Area (UAA) Total Labour (TL) Intermediate consumption deflated (IC) Fixed Assets deflated (FA) Land price deflated (PL) Labour price deflated (PL) Intermediate consumption price index (PIC) Capital price index (PC) 70,759 40.62 1.49 45,897 231,170 39,469 21.46 0.49 23,759 133,405 3,875 9.50 0.38 8,097 12,862 257,642 144.79 3.27 146,268 786,807 131,843 84.06 1.91 105,422 362,104 129,835 80.85 1.06 101,116 377,782 12,274 9.53 0.50 7,971 38,610 78 26,063 100 100 94 3,491 0 0 1 11,553 100 100 1,293 58,856 100 100 88 24,624 128 132 127 4,172 0 0 0 4,469 128 132 Source: authors’ calculations 55 797,823 756.70 9.22 860,600 3,459,39 6 1,426 45,860 128 132 Annex 4 Yearly technical efficiency estimates Crop farms (TF 1) Years SFA Mean St. Min Dev. BELGIUM 1990 1991 0.909 0.025 0.805 1992 0.906 0.029 0.790 1993 0.898 0.047 0.627 1994 0.907 0.039 0.769 1995 0.910 0.038 0.742 1996 0.890 0.082 0.362 1997 0.884 0.073 0.508 1998 0.896 0.052 0.554 1999 2000 0.877 0.066 0.506 2001 0.883 0.068 0.468 2002 0.875 0.081 0.422 2003 0.866 0.079 0.446 2004 0.896 0.057 0.531 2005 0.870 0.064 0.587 2006 0.855 0.064 0.607 Whole period 0.887 0.061 0.362 ESTONIA 2004 0.826 0.070 0.451 2005 0.844 0.051 0.686 2006 0.811 0.068 0.492 Whole period 0.826 0.064 0.450 FRANCE 1990 0.859 0.059 0.441 1991 0.869 0.049 0.461 1992 0.850 0.064 0.389 1993 0.824 0.070 0.247 1994 0.822 0.073 0.210 1995 0.813 0.072 0.339 1996 0.816 0.066 0.404 1997 0.813 0.071 0.425 1998 0.809 0.067 0.382 1999 0.796 0.077 0.215 2000 0.795 0.073 0.337 2001 0.776 0.085 0.225 2002 0.784 0.076 0.312 2003 0.783 0.086 0.267 2004 0.781 0.081 0.304 2005 0.763 0.086 0.308 2006 0.786 0.086 0.149 DEA Min Max Mean St. Dev. Max 0.948 0.946 0.953 0.951 0.963 0.957 0.948 0.951 0.968 0.964 0.967 0.967 0.971 0.971 0.944 0.971 0.802 0.793 0.736 0.791 0.741 0.707 0.775 0.731 0.621 0.741 0.643 0.732 0.656 0.697 0.730 0.679 0.678 0.720 0.139 0.122 0.145 0.147 0.171 0.174 0.153 0.167 0.220 0.160 0.174 0.177 0.185 0.170 0.169 0.159 0.172 0.173 0.488 0.491 0.362 0.456 0.405 0.179 0.301 0.307 0.190 0.245 0.211 0.202 0.203 0.240 0.358 0.368 0.381 0.179 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.948 0.931 0.936 0.947 0.630 0.642 0.588 0.620 0.208 0.199 0.198 0.203 0.112 0.128 0.228 0.112 1.000 1.000 1.000 1.000 0.955 0.965 0.957 0.952 0.956 0.953 0.957 0.946 0.951 0.955 0.927 0.950 0.948 0.957 0.959 0.967 0.965 0.562 0.555 0.568 0.537 0.431 0.508 0.479 0.533 0.558 0.505 0.534 0.495 0.500 0.565 0.524 0.531 0.424 0.154 0.167 0.155 0.160 0.145 0.148 0.152 0.151 0.144 0.152 0.144 0.161 0.143 0.144 0.151 0.164 0.141 0.127 0.080 0.095 0.062 0.034 0.072 0.083 0.102 0.143 0.046 0.106 0.043 0.105 0.143 0.071 0.048 0.023 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Whole period GERMANY 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 Whole period HUNGARY 2004 2005 2006 Whole period ITALY 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 Whole period THE NETHERLANDS 1990 1991 1992 0.807 0.079 0.148 0.967 0.518 0.157 0.023 1.000 0.815 0.825 0.819 0.799 0.793 0.779 0.786 0.783 0.770 0.781 0.775 0.781 0.741 0.754 0.774 0.761 0.774 0.779 0.073 0.072 0.083 0.093 0.091 0.094 0.082 0.095 0.103 0.091 0.087 0.089 0.110 0.112 0.093 0.089 0.092 0.094 0.365 0.416 0.367 0.106 0.291 0.160 0.418 0.071 0.072 0.333 0.353 0.221 0.049 0.073 0.245 0.315 0.151 0.048 0.942 0.951 0.956 0.949 0.958 0.934 0.959 0.958 0.946 0.968 0.953 0.941 0.955 0.967 0.967 0.946 0.963 0.968 0.649 0.554 0.592 0.559 0.501 0.530 0.422 0.433 0.443 0.327 0.534 0.476 0.391 0.392 0.500 0.488 0.414 0.472 0.167 0.162 0.170 0.175 0.180 0.156 0.137 0.148 0.147 0.146 0.165 0.145 0.151 0.178 0.171 0.163 0.163 0.177 0.166 0.133 0.167 0.034 0.092 0.068 0.109 0.010 0.011 0.062 0.122 0.092 0.066 0.008 0.087 0.105 0.022 0.008 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.803 0.773 0.783 0.786 0.075 0.082 0.094 0.084 0.335 0.152 0.177 0.151 0.952 0.937 0.968 0.968 0.369 0.466 0.446 0.425 0.163 0.169 0.178 0.175 0.089 0.022 0.024 0.022 1.000 1.000 1.000 1.000 0.763 0.779 0.763 0.763 0.754 0.746 0.736 0.732 0.733 0.737 0.733 0.741 0.739 0.724 0.723 0.739 0.741 0.744 0.082 0.064 0.073 0.075 0.080 0.088 0.089 0.090 0.089 0.089 0.096 0.090 0.098 0.105 0.102 0.100 0.095 0.089 0.128 0.467 0.241 0.216 0.215 0.178 0.056 0.108 0.126 0.226 0.096 0.164 0.061 0.154 0.218 0.145 0.184 0.055 0.931 0.930 0.917 0.939 0.921 0.938 0.953 0.927 0.920 0.926 0.938 0.943 0.954 0.941 0.966 0.969 0.934 0.968 0.318 0.312 0.334 0.298 0.320 0.225 0.263 0.239 0.241 0.296 0.231 0.203 0.239 0.183 0.203 0.142 0.208 0.255 0.149 0.148 0.162 0.160 0.159 0.160 0.168 0.153 0.155 0.166 0.149 0.110 0.153 0.138 0.142 0.134 0.141 0.160 0.010 0.056 0.027 0.024 0.019 0.008 0.002 0.003 0.003 0.024 0.003 0.012 0.001 0,007 0.023 0.003 0.008 0.001 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.921 0.911 0.895 0.001 0.803 0.957 0.658 0.001 0.744 0.950 0.696 0.002 0.488 0.954 0.646 57 0.161 0.282 1.000 0.165 0.344 1.000 0.173 0.200 1.000 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 Whole period SWEDEN 0.906 0.923 0.911 0.902 0.915 0.917 0.889 0.888 0.906 0.890 0.901 0.876 0.893 0.898 0.904 0.002 0.001 0.002 0.002 0.001 0.002 0.003 0.003 0.003 0.003 0.003 0.004 0.003 0.004 0.039 0.749 0.792 0.660 0.752 0.815 0.737 0.561 0.521 0.623 0.658 0.560 0.507 0.726 0.597 0.488 0.953 0.959 0.961 0.954 0.960 0.955 0.953 0.951 0.969 0.964 0.957 0.946 0.949 0.955 1.000 0.673 0.639 0.688 0.715 0.558 0.666 0.683 0.681 0.387 0.555 0.579 0.603 0.574 0.578 0.630 0.170 0.201 0.180 0.168 0.189 0.183 0.190 0.186 0.179 0.198 0.207 0.177 0.166 0.212 0.196 0.335 0.281 0.224 0.249 0.212 0.229 0.179 0.180 0.105 0.192 0.229 0.161 0.236 0.196 0.105 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1995 0.803 1996 0.831 1997 0.809 1998 0.748 1999 0.753 2000 0.754 2001 0.750 2002 0.769 2003 0.774 2004 0.753 2005 0.764 2006 0.757 Whole period 0.769 ALL COUNTRIES 1990 0.788 1991 0.800 1992 0.784 1993 0.778 1994 0.772 1995 0.762 1996 0.757 1997 0.753 1998 0.749 1999 0.749 2000 0.746 2001 0.749 2002 0.744 2003 0.738 2004 0.738 2005 0.737 2006 0.745 Whole period 0.757 Source: authors’ calculations 0.010 0.008 0.008 0.012 0.012 0.010 0.010 0.009 0.009 0.009 0.008 0.009 0.141 0.114 0.342 0.405 0.152 0.211 0.087 0.061 0.178 0.270 0.158 0.286 0.204 0.061 0.941 0.942 0.941 0.938 0.945 0.931 0.938 0.936 0.937 0.929 0.930 0.928 1.000 0.556 0.669 0.549 0.553 0.523 0.556 0.544 0.562 0.549 0.561 0.591 0.572 0.563 0.220 0.206 0.200 0.221 0.219 0.224 0.231 0.216 0.211 0.205 0.208 0.214 0.217 0.044 0.164 0.149 0.095 0.091 0.037 0.026 0.072 0.132 0.075 0.158 0.096 0.026 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.081 0.066 0.077 0.079 0.083 0.089 0.087 0.092 0.093 0.092 0.095 0.094 0.098 0.104 0.096 0.096 0.096 0.091 0.107 0.423 0.216 0.133 0.189 0.154 0.044 0.089 0.088 0.200 0.078 0.130 0.047 0.096 0.197 0.124 0.152 0.044 0.948 0.947 0.936 0.952 0.938 0.953 0.965 0.944 0.940 0.944 0.955 0.957 0.966 0.955 0.975 0.978 0.951 0.977 0.384 0.366 0.393 0.361 0.351 0.308 0.324 0.312 0.298 0.283 0.298 0.206 0.280 0.242 0.207 0.172 0.223 0.293 0.173 0.009 1.000 0.177 0.055 1.000 0.175 0.026 1.000 0.179 0.024 1.000 0.156 0.019 1.000 0.181 0.008 1.000 0.166 0.002 1.000 0.169 0.003 1.000 0.145 0.008 1.000 0.144 0.021 1.000 0.166 0.003 1.000 0.099 0.012 1.000 0.150 0.001 1.000 0.143 0.007 1.000 0.108 0.023 1.000 0.118 0.003 1.000 0.133 0.008 1.000 0.166 0.001 1.000 58 Annex 5 Yearly technical efficiency estimates Dairy farms (TF 41) Years SFA Mean St. Min Dev. BELGIUM 1990 1991 0.904 0.044 0.638 1992 0.889 0.062 0.352 1993 0.906 0.048 0.601 1994 0.909 0.049 0.660 1995 0.903 0.050 0.464 1996 0.876 0.088 0.029 1997 0.871 0.066 0.584 1998 0.892 0.063 0.534 1999 2000 0.894 0.064 0.514 2001 0.897 0.061 0.530 2002 0.889 0.079 0.368 2003 0.874 0.085 0.424 2004 0.888 0.062 0.515 2005 0.864 0.080 0.321 2006 0.854 0.074 0.410 Whole period 0.884 0.073 0.029 ESTONIA 2004 0.826 0.070 0.451 2005 0.844 0.051 0.686 2006 0.811 0.068 0.492 Whole period 0.915 0.040 0.646 FRANCE 1990 0.912 0.053 0.220 1991 0.903 0.058 0.233 1992 0.910 0.063 0.258 1993 0.913 0.055 0.340 1994 0.915 0.049 0.462 1995 0.909 0.054 0.217 1996 0.895 0.065 0.260 1997 0.894 0.064 0.375 1998 0.904 0.055 0.431 1999 0.899 0.063 0.284 2000 0.899 0.068 0.112 2001 0.891 0.064 0.405 2002 0.889 0.074 0.030 2003 0.878 0.072 0.247 2004 0.869 0.083 0.381 2005 0.870 0.081 0.210 2006 0.848 0.096 0.276 59 DEA Min Max Mean St. Dev. Max 0.964 0.966 0.971 0.965 0.961 0.958 0.954 0.963 0.967 0.962 0.964 0.965 0.965 0.963 0.973 0.973 0.714 0.703 0.720 0.763 0.755 0.754 0.766 0.760 0.764 0.724 0.755 0.749 0.746 0.751 0.730 0.695 0.763 0.742 0.136 0.145 0.139 0.143 0.130 0.148 0.135 0.138 0.137 0.139 0.144 0.161 0.154 0.140 0.147 0.156 0.139 0.145 0.336 0.226 0.367 0.395 0.314 0.019 0.434 0.298 0.422 0.316 0.337 0.289 0.295 0.325 0.264 0.233 0.394 0.019 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.948 0.931 0.936 0.971 0.672 0.747 0.693 0.704 0.152 0.148 0.161 0.157 0.326 0.335 0.291 0.291 1.000 1.000 1.000 1.000 0.975 0.975 0.979 0.978 0.980 0.975 0.972 0.975 0.977 0.974 0.971 0.975 0.976 0.970 0.974 0.970 0.974 0.667 0.683 0.667 0.680 0.705 0.651 0.684 0.661 0.618 0.643 0.711 0.686 0.643 0.595 0.719 0.681 0.635 0.120 0.124 0.131 0.131 0.118 0.116 0.121 0.118 0.120 0.125 0.126 0.123 0.126 0.140 0.132 0.133 0.131 0.142 0.144 0.147 0.176 0.299 0.121 0.166 0.205 0.235 0.156 0.075 0.252 0.016 0.143 0.260 0.146 0.162 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Whole period GERMANY 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 Whole period HUNGARY 2004 2005 2006 Whole period ITALY 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 Whole period THE NETHERLANDS 1990 1991 1992 0.895 0.067 0.030 0.980 0.667 0.129 0.016 1.000 0.870 0.860 0.874 0.860 0.850 0.842 0.824 0.840 0.854 0.858 0.866 0.851 0.829 0.817 0.824 0.815 0.820 0.843 0.060 0.063 0.055 0.064 0.068 0.073 0.068 0.069 0.073 0.067 0.060 0.071 0.079 0.081 0.079 0.072 0.078 0.072 0.336 0.356 0.532 0.463 0.354 0.399 0.493 0.398 0.152 0.334 0.471 0.375 0.340 0.402 0.279 0.345 0.312 0.152 0.962 0.977 0.970 0.966 0.981 0.965 0.979 0.967 0.975 0.976 0.974 0.963 0.974 0.980 0.965 0.972 0.965 0.981 0.682 0.503 0.644 0.657 0.529 0.573 0.407 0.591 0.532 0.532 0.547 0.607 0.491 0.512 0.581 0.572 0.560 0.558 0.127 0.142 0.126 0.131 0.130 0.121 0.127 0.131 0.135 0.143 0.132 0.129 0.134 0.155 0.124 0.146 0.132 0.148 0.130 0.100 0.234 0.205 0.129 0.173 0.141 0.189 0.082 0.089 0.191 0.156 0.105 0.122 0.109 0.114 0.121 0.082 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.842 0.847 0.865 0.851 0.065 0.062 0.042 0.057 0.544 0.566 0.723 0.544 0.940 0.944 0.953 0.953 0.717 0.703 0.720 0.714 0.189 0.185 0.189 0.187 0.230 0.248 0.362 0.230 1.000 1.000 1.000 1.000 0.920 0.919 0.917 0.919 0.917 0.918 0.916 0.914 0.913 0.914 0.914 0.918 0.918 0.908 0.915 0.916 0.916 0.916 0.029 0.021 0.023 0.024 0.038 0.030 0.027 0.029 0.028 0.028 0.028 0.024 0.023 0.038 0.026 0.025 0.027 0.027 0.144 0.683 0.666 0.462 0.092 0.067 0.513 0.477 0.530 0.568 0.476 0.658 0.555 0.359 0.669 0.688 0.713 0.067 0.962 0.967 0.965 0.966 0.963 0.961 0.967 0.966 0.966 0.963 0.961 0.962 0.975 0.967 0.972 0.963 0.969 0.974 0.502 0.480 0.494 0.464 0.444 0.466 0.439 0.387 0.412 0.419 0.416 0.432 0.334 0.429 0.413 0.440 0.438 0.438 0.150 0.170 0.167 0.157 0.164 0.155 0.175 0.169 0.166 0.161 0.148 0.159 0.145 0.181 0.175 0.172 0.201 0.169 0.026 0.094 0.144 0.085 0.015 0.013 0.105 0.078 0.084 0.088 0.091 0.145 0.051 0.058 0.111 0.114 0.090 0.013 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.925 0.924 0.929 0.002 0.632 0.966 0.770 0.001 0.698 0.966 0.770 0.001 0.722 0.970 0.767 60 0.119 0.388 1.000 0.116 0.392 1.000 0.110 0.399 1.000 1993 0.927 1994 0.923 1995 0.906 1996 0.882 1997 0.908 1998 0.900 1999 0.899 2000 0.903 2001 0.894 2002 0.871 2003 0.874 2004 0.862 2005 0.858 2006 0.848 Whole period 0.899 SWEDEN 1995 0.878 1996 0.866 1997 0.853 1998 0.851 1999 0.832 2000 0.852 2001 0.834 2002 0.833 2003 0.839 2004 0.813 2005 0.811 2006 0.792 Whole period 0.837 ALL COUNTRIES 1990 0.866 1991 0.861 1992 0.864 1993 0.863 1994 0.860 1995 0.852 1996 0.844 1997 0.848 1998 0.848 1999 0.850 2000 0.853 2001 0.850 2002 0.844 2003 0.835 2004 0.835 2005 0.833 2006 0.830 Whole period 0.849 Source: authors’ calculations 0.001 0.002 0.002 0.003 0.002 0.003 0.003 0.003 0.003 0.004 0.004 0.004 0.005 0.005 0.060 0.731 0.768 0.686 0.496 0.345 0.560 0.539 0.585 0.565 0.566 0.452 0.510 0.219 0.078 0.078 0.971 0.970 0.970 0.957 0.968 0.975 0.967 0.968 0.970 0.972 0.969 0.965 0.967 0.959 1.000 0.767 0.729 0.728 0.733 0.738 0.695 0.731 0.751 0.749 0.663 0.678 0.745 0.652 0.708 0.732 0.114 0.114 0.122 0.121 0.126 0.134 0.132 0.126 0.131 0.139 0.127 0.125 0.145 0.143 0.130 0.419 0.424 0.386 0.332 0.208 0.309 0.350 0.359 0.346 0.372 0.309 0.460 0.224 0.081 0.081 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.006 0.006 0.006 0.006 0.007 0.006 0.006 0.006 0.005 0.006 0.006 0.006 0.113 0.193 0.285 0.137 0.285 0.198 0.270 0.315 0.180 0.294 0.342 0.259 0.495 0.137 0.975 0.977 0.971 0.963 0.960 0.956 0.963 0.954 0.957 0.961 0.947 0.947 1.000 0.623 0.683 0.613 0.653 0.658 0.682 0.681 0.687 0.682 0.635 0.693 0.679 0.665 0.169 0.177 0.158 0.150 0.168 0.166 0.165 0.169 0.154 0.164 0.157 0.149 0.164 0.092 0.188 0.094 0.179 0.127 0.162 0.162 0.117 0.180 0.212 0.192 0.360 0.092 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.044 0.045 0.046 0.047 0.051 0.053 0.052 0.054 0.055 0.057 0.054 0.054 0.057 0.060 0.058 0.057 0.059 0.054 0.233 0.445 0.483 0.430 0.188 0.165 0.455 0.303 0.262 0.319 0.309 0.478 0.163 0.388 0.390 0.418 0.251 0.163 0.960 0.966 0.964 0.965 0.964 0.959 0.967 0.964 0.965 0.961 0.959 0.959 0.977 0.967 0.974 0.964 0.971 0.976 0.521 0.470 0.523 0.491 0.465 0.464 0.437 0.429 0.446 0.461 0.447 0.438 0.375 0.410 0.384 0.402 0.382 0.452 0.130 0.146 0.139 0.137 0,143 0.127 0.146 0.147 0.144 0.150 0.136 0.137 0.124 0.130 0.121 0.134 0.138 0.148 0.026 0.087 0.131 0.085 0.014 0.013 0.009 0.044 0.082 0.038 0.046 0.089 0.011 0.053 0.045 0.065 0.024 0.011 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 61 Annex 6 Yearly scale efficiency estimates Crop farms (TF 1) Years BELGIUM 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 Whole period ESTONIA 2004 2005 2006 Whole period FRANCE 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 Dairy farms (TF 41) Mean St. Dev. Min DEA Max Mean 0.913 0.910 0.921 0.910 0.916 0.900 0.941 0.859 0.745 0.897 0.837 0.895 0.855 0.869 0.886 0.845 0.862 0.879 0.099 0.105 0.087 0.122 0.105 0.134 0.076 0.138 0.216 0.123 0.165 0.164 0.163 0.147 0.135 0.136 0.129 0.143 0.568 0.495 0.488 0.503 0.532 0.211 0.668 0.448 0.252 0.385 0.355 0.285 0.236 0.265 0.362 0.446 0.467 0.211 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.841 0.872 0.796 0.837 0.169 0.143 0.171 0.164 0.302 0.231 0.267 0.231 0.767 0.751 0.806 0.743 0.647 0.732 0.709 0.760 0.758 0.752 0.757 0.731 0.739 0.759 0.757 0.773 0.667 0.182 0.185 0.175 0.182 0.203 0.193 0.203 0.182 0.164 0.201 0.181 0.209 0.195 0.165 0.208 0.222 0.238 0.161 0.080 0.101 0.120 0.050 0.081 0.083 0.102 0.175 0.050 0.141 0.057 0.105 0.175 0.077 0.060 0.024 62 St. Dev. Min Max 0.878 0.864 0.859 0.904 0.931 0.911 0.925 0.931 0.921 0.911 0.912 0.920 0.926 0.917 0.895 0.876 0.907 0.906 0.112 0.121 0.121 0.103 0.096 0.117 0.091 0.092 0.096 0.099 0.115 0.114 0.102 0.099 0.117 0.123 0.112 0.110 0.337 0.328 0.421 0.43 0.329 0.034 0.435 0.324 0.452 0.376 0.449 0.372 0.406 0.345 0.285 0.44 0.456 0.034 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.870 0.923 0.840 0.878 0.135 0.099 0.148 0.878 0.519 0.490 0.395 0.395 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.872 0.890 0.897 0.897 0.878 0.868 0.869 0.867 0.855 0.857 0.899 0.880 0.809 0.784 0.874 0.853 0.814 0.128 0.119 0.121 0.118 0.123 0.133 0.128 0.145 0.144 0.134 0.117 0.142 0.160 0.156 0.160 0.166 0.182 0.145 0.180 0.227 0.379 0.417 0.218 0.176 0.214 0.281 0.180 0.134 0.277 0.017 0.175 0.317 0.146 0.233 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Whole period GERMANY 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 Whole period HUNGARY 2004 2005 2006 Whole period ITALY 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 Whole period THE NETHERLANDS 1990 1991 1992 0.742 0.198 0.024 1.000 0.864 0.143 0.017 1.000 0.896 0.858 0.845 0.873 0.833 0.767 0.663 0.672 0.680 0.539 0.759 0.714 0.610 0.599 0.712 0.701 0.632 0.711 0.126 0.159 0.148 0.148 0.181 0.213 0.221 0.231 0.220 0.240 0.211 0.225 0.248 0.262 0.253 0.236 0.265 0.242 0.375 0.242 0.284 0.172 0.126 0.101 0.138 0.011 0.028 0.078 0.136 0.092 0.066 0.012 0.087 0.105 0.025 0.011 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.934 0.813 0.902 0.908 0.858 0.824 0.627 0.833 0.779 0.747 0.753 0.810 0.712 0.722 0.812 0.768 0.758 0.795 0.090 0.141 0.109 0.108 0.144 0.169 0.193 0.162 0.182 0.180 0.165 0.152 0.185 0.199 0.167 0.183 0.164 0.179 0.262 0.181 0.368 0.360 0.171 0.249 0.159 0.283 0.082 0.089 0.191 0.156 0.105 0.122 0.109 0.114 0.145 0.082 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.786 0.859 0.846 0.828 0.190 0.154 0.183 0.180 0.136 0.133 0.036 0.036 1.000 1.000 1.000 1.000 0.911 0.924 0.919 0.918 0.124 0.109 0.114 0.116 0.333 0.448 0.362 0.333 1.000 1.000 1.000 1.000 0.719 0.717 0.751 0.763 0.800 0.557 0.668 0.612 0.611 0.666 0.678 0.605 0.633 0.534 0.596 0.459 0.601 0.652 0.217 0.203 0.203 0.212 0.189 0.232 0.238 0.219 0.218 0.217 0.240 0.222 0.238 0.259 0.247 0.273 0.232 0.241 0.014 0.099 0.031 0.056 0.029 0.012 0.007 0.014 0.014 0.041 0.009 0.023 0.001 0.009 0.055 0.004 0.038 0.001 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.846 0.783 0.829 0.867 0.824 0.849 0.794 0.887 0.893 0.924 0.921 0.835 0.724 0.794 0.757 0.813 0.760 0.835 0.150 0.188 0.164 0.148 0.140 0.161 0.187 0.137 0.129 0.098 0.108 0.157 0.201 0.189 0.215 0.189 0.220 0.171 0.091 0.133 0.220 0.187 0.053 0.034 0.152 0.216 0.163 0.281 0.209 0.201 0.158 0.178 0.177 0.187 0.150 0.034 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.894 0.906 0.888 0.128 0.290 1.000 0.908 0.122 0.380 1.000 0.902 0.143 0.359 1.000 0.918 63 0.100 0.441 1.000 0.101 0.409 1.000 0.099 0.439 1.000 1993 0.895 1994 0.885 1995 0.903 1996 0.918 1997 0.849 1998 0.901 1999 0.908 2000 0.911 2001 0.733 2002 0.862 2003 0.864 2004 0.846 2005 0.824 2006 0.836 Whole period 0.876 SWEDEN 1995 0.766 1996 0.888 1997 0.835 1998 0.829 1999 0.792 2000 0.807 2001 0.791 2002 0.798 2003 0.768 2004 0.808 2005 0.836 2006 0.814 Whole period 0.809 ALL COUNTRIES 1990 0.800 1991 0.770 1992 0.823 1993 0.837 1994 0.863 1995 0.715 1996 0.773 1997 0.743 1998 0.822 1999 0.734 2000 0.799 2001 0.746 2002 0.679 2003 0.708 2004 0.739 2005 0.690 2006 0.734 Whole period 0.762 Source: authors’ calculations 0.128 0.145 0.145 0.116 0.174 0.138 0.157 0.155 0.221 0.181 0.167 0.173 0.178 0.198 0.161 0.458 0.304 0.325 0.313 0.290 0.337 0.191 0.192 0.143 0.211 0.250 0.185 0.236 0.202 0.143 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.932 0.897 0.895 0.905 0.908 0.889 0.888 0.901 0.924 0.854 0.870 0.931 0.847 0.872 0.898 0.094 0.110 0.114 0.101 0.110 0.122 0.121 0.109 0.099 0.139 0.121 0.087 0.139 0.131 0.113 0.510 0.438 0.407 0.391 0.259 0.374 0.409 0.398 0.457 0.372 0.424 0.480 0.224 0.081 0.081 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.205 0.163 0.187 0.207 0.224 0.229 0.242 0.221 0.225 0.206 0.183 0.187 0.212 0.078 0.207 0.262 0.111 0.093 0.060 0.030 0.100 0.132 0.119 0.168 0.222 0.030 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.834 0.856 0.803 0.865 0.833 0.860 0.865 0.844 0.849 0.807 0.859 0.859 0.844 0.157 0.166 0.169 0.138 0.170 0.155 0.150 0.160 0.145 0.164 0.134 0.134 0.155 0.149 0.219 0.138 0.372 0.129 0.246 0.192 0.152 0.274 0.212 0.316 0.387 0.129 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.201 0.195 0.190 0.192 0.168 0.253 0.227 0.228 0.179 0.216 0.232 0.227 0.213 0.260 0.227 0.290 0.228 0.127 0.012 0.099 0.029 0.056 0.029 0.012 0.007 0.014 0.033 0.037 0.009 0.001 0.047 0.009 0.055 0.004 0.028 0.001 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.865 0.797 0.878 0.893 0.837 0.867 0.792 0.908 0.909 0.944 0.930 0.858 0.762 0.821 0.891 0.873 0.783 0.859 0.117 0.134 0.126 0.116 0.125 0.146 0.167 0.110 0.109 0.079 0.086 0.151 0.176 0.144 0.127 0.122 0.151 0.142 0.091 0.133 0.236 0.187 0.053 0.034 0.135 0.186 0.082 0.164 0.209 0.099 0.024 0.127 0.163 0.177 0.051 0.024 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 64 Annex 7 Yearly allocative efficiency estimates Crop farms (TF 1) Years SFA Mean St. Min Dev. BELGIUM 1990 0.924 0.020 0.872 1991 0.925 0.020 0.874 1992 0.927 0.023 0.861 1993 0.912 0.028 0.844 1994 0.898 0.058 0.695 1995 0.924 0.022 0.846 1996 0.933 0.019 0.864 1997 0.919 0.026 0.838 1998 1999 0.921 0.054 0.595 2000 0.920 0.042 0.735 2001 0.923 0.029 0.807 2002 0.922 0.030 0.798 2003 0.895 0.040 0.785 2004 0.927 0.025 0.841 2005 0.921 0.030 0.837 2006 0.927 0.019 0.883 Whole period 0.920 0.034 0.595 ESTONIA 2004 0.884 0.056 0.522 2005 0.883 0.053 0.640 2006 0.880 0.058 0.601 Whole period 0.882 0.055 0.521 FRANCE 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 Whole period GERMANY 65 DEA Min Max Mean St. Dev. Max 0.956 0.956 0.969 0.963 0.957 0.959 0.962 0.951 0.960 0.965 0.966 0.966 0.950 0.965 0.958 0.953 0.969 0.171 0.173 0.184 0.244 0.181 0.259 0.226 0.206 0.307 0.143 0.281 0.208 0.173 0.155 0.147 0.245 0.204 0.168 0.279 0.262 0.289 0.258 0.289 0.293 0.337 0.304 0.388 0.195 0.266 0.285 0.204 0.225 0.220 0.241 0.277 0.266 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.002 0.000 0.000 1.000 0.944 1.191 1.231 1.000 1.162 1.148 1.000 1.692 1.000 1.016 1.000 1.000 1.000 1.000 1.000 1.692 0.995 0.952 0.953 0.953 0.953 0.574 0.532 0.732 0.612 0.217 0.162 0.198 0.211 0.117 0.171 0.188 0.117 1.000 1.000 1.000 1.000 - 0.327 0.413 0.339 0.287 0.354 0.389 0.408 0.458 0.491 0.391 0.430 0.338 0.394 0.286 0.248 0.154 0.235 0.352 0.117 0.125 0.150 0.120 0.120 0.152 0.140 0.165 0.169 0.146 0.154 0.134 0.142 0.116 0.109 0.082 0.111 0.159 0.062 0.087 0.069 0.067 0.067 0.038 0.057 0.096 0.135 0.102 0.064 0.079 0.091 0.063 0.042 0.031 0.019 0.019 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 Whole period HUNGARY 2004 2005 2006 Whole period ITALY 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 Whole period THE NETHERLANDS 1990 1991 1992 1993 1994 - - - - 0.327 0.238 0.260 0.227 0.116 0.256 0.314 0.222 0.286 0.432 0.195 0.307 0.281 0.144 0.430 0.305 0.317 0.211 0.168 0.140 0.156 0.135 0.082 0.206 0.239 0.154 0.214 0.272 0.139 0.221 0.191 0.101 0.237 0.193 0.176 0.206 0.036 0.030 0.040 0.035 0.012 0.016 0.039 0.026 0.033 0.044 0.021 0.026 0.034 0.012 0.005 0.026 0.024 0.005 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.872 0.870 0.854 0.054 0.057 0.076 0.405 0.451 0.297 0.971 0.959 0.964 0.692 0.454 0.264 0.481 0.239 0.181 0.138 0.261 0.023 0.034 0.033 0.023 1.000 1.000 1.000 1.000 0.120 0.124 0.116 0.104 0.084 0.154 0.149 0.145 0.110 0.078 0.048 0.070 0.116 0.165 0.020 0.020 0.084 0.102 0.114 0.128 0.133 0.105 0.115 0.144 0.154 0.166 0.132 0.112 0.064 0.116 0.165 0.168 0.028 0.024 0.103 0.131 0.012 0.007 0.008 0.007 0.004 0.007 0.005 0.009 0.004 0.003 0.001 0.002 0.003 0.000 0.001 0.001 0.002 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.358 0.333 0.372 0.367 0.411 0.209 0.208 0.204 0.196 0.227 0.076 0.031 0.096 0.096 0.093 1.000 1.000 1.000 1.000 1.000 0.794 0.797 0.796 0.795 0.785 0.010 0.007 0.009 0.010 0.020 0.737 0.692 0.459 0.695 0.726 66 0.706 0.726 0.735 0.698 0.682 1995 0.800 1996 0.808 1997 0.809 1998 0.801 1999 0.791 2000 0.802 2001 0.817 2002 0.812 2003 0.820 2004 0.806 2005 0.819 2006 0.827 Whole period 0.803 SWEDEN 1995 0.754 1996 0.781 1997 0.762 1998 0.705 1999 0.710 2000 0.713 2001 0.709 2002 0.728 2003 0.733 2004 0.714 2005 0.725 2006 0.719 Whole period 0.727 ALL COUNTRIES 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 Whole period Source: authors’ calculations 0.005 0.003 0.004 0.004 0.014 0.002 0.012 0.007 0.016 0.002 0.014 0.022 0.029 0.612 0.698 0.757 0.683 0.525 0.491 0.588 0.623 0.531 0.481 0.686 0.567 0.459 0.675 0.732 0.731 0.729 0.724 0.767 0.681 0.700 0.787 0.822 0.823 0.815 0.823 0.309 0.249 0.365 0.329 0.205 0.223 0.331 0.279 0.225 0.184 0.191 0.261 0.301 0.198 0.153 0.166 0.198 0.137 0.147 0.205 0.167 0.163 0.158 0.169 0.174 0.197 0.072 0.057 0.086 0.070 0.027 0.021 0.051 0.059 0.050 0.038 0.029 0.045 0.021 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.025 0.052 0.033 0.024 0.020 0.017 0.020 0.002 0.004 0.015 0.004 0.011 0.131 0.110 0.327 0.387 0.147 0.202 0.084 0.059 0.171 0.260 0.152 0.275 0.196 0.059 0.863 0.866 0.867 0.869 0.873 0.861 0.869 0.869 0.874 0.870 0.869 0.868 1.000 0.382 0.405 0.308 0.373 0.330 0.279 0.240 0.283 0.267 0.244 0.206 0.255 0.288 0.235 0.222 0.196 0.256 0.224 0.202 0.179 0.206 0.197 0.174 0.173 0.222 0.212 0.091 0.137 0.079 0.093 0.055 0.060 0.053 0.071 0.061 0.054 0.037 0.029 0.029 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 - - - 0.141 0.148 0.139 0.111 0.123 0.184 0.193 0.183 0.162 0.132 0.065 0.120 0.148 0.199 0.033 0.027 0.127 0.130 0.105 0.124 0.125 0.093 0.113 0.131 0.149 0.148 0.129 0.111 0.055 0.126 0.148 0.158 0.027 0.021 0.110 0.127 0.012 0.007 0.008 0.007 0.004 0.007 0.009 0.010 0.004 0.004 0.001 0.002 0.003 0.000 0.001 0.036 0.002 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 67 Annex 8 Yearly allocative efficiency estimates Dairy farms (TF 41) Years SFA Mean St. Min Dev. BELGIUM 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 Whole period ESTONIA 2004 0.911 0.056 0.536 2005 0.913 0.038 0.708 2006 0.917 0.032 0.780 Whole period 0.913 0.042 0.535 FRANCE 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 - 68 DEA Min Max Mean St. Dev. Max - 0.383 0.349 0.348 0.382 0.415 0.413 0.323 0.347 0.510 0.442 0.420 0.416 0.445 0.337 0.288 0.266 0.384 0.365 0.344 0.339 0.334 0.338 0.384 0.328 0.297 0.305 0.131 0.367 0.344 0.327 0.364 0.335 0.284 0.258 0.328 0.347 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.170 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.319 1.101 1.070 1.072 1.316 1.176 1.000 1.000 1.000 1.091 1.086 1.031 1.100 1.088 1.000 1.000 1.319 1.171 0.962 0.969 0.968 0.968 0.693 0.580 0.729 0.668 0.161 0.128 0.194 0.175 0.203 0.184 0.213 0.184 1.000 1.000 1.000 1.000 - 0.423 0.613 0.335 0.611 0.243 0.367 0.613 0.337 0.599 0.444 0.417 0.293 0.304 0.325 0.226 0.630 0.295 0.118 0.156 0.086 0.140 0.068 0.096 0.138 0.088 0.150 0.109 0.103 0.078 0.086 0.099 0.070 0.153 0.090 0.089 0.181 0.080 0.195 0.081 0.107 0.209 0.128 0.183 0.141 0.127 0.079 0.078 0.092 0.065 0.232 0.091 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Whole period GERMANY 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 Whole period HUNGARY 2004 2005 2006 Whole period ITALY 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 Whole period THE NETHERLANDS 1990 1991 1992 0.417 0.176 0.065 1.000 0.937 0.942 0.936 0.938 0.939 0.939 0.946 0.941 0.926 0.922 0.926 0.937 0.939 0.940 0.939 0.942 0.939 0.935 0.021 0.017 0.027 0.021 0.021 0.025 0.027 0.023 0.035 0.029 0.035 0.023 0.024 0.023 0.026 0.020 0.021 0.025 0.775 0.808 0.629 0.754 0.775 0.714 0.394 0.756 0.705 0.756 0.470 0.801 0.664 0.768 0.613 0.736 0.778 0.393 0.976 0.973 0.976 0.978 0.975 0.979 0.973 0.974 0.984 0.971 0.972 0.982 0.976 0.979 0.981 0.977 0.983 0.984 0.382 0.551 0.415 0.405 0.491 0.327 0.363 0.222 0.225 0.375 0.412 0.316 0.429 0.380 0.300 0.409 0.460 0.334 0.131 0.186 0.140 0.139 0.117 0.191 0.169 0.125 0.109 0.182 0.201 0.202 0.247 0.178 0.175 0.178 0.212 0.194 0.063 0.102 0.079 0.073 0.104 0.027 0.049 0.027 0.029 0.069 0.066 0.045 0.066 0.093 0.049 0.079 0.071 0.027 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.824 0.863 0.867 0.132 0.116 0.125 0.245 0.298 0.141 0.992 0.989 0.991 0.635 0.327 0.512 0.489 0.180 0.165 0.173 0.212 0.161 0.099 0.095 0.095 1.000 1.000 1.000 1.000 0.786 0.780 0.785 0.788 0.775 0.794 0.807 0.806 0.800 0.785 0.780 0.781 0.777 0.794 0.783 0.758 0.767 0.786 0.073 0.089 0.071 0.079 0.075 0.072 0.085 0.086 0.077 0.090 0.092 0.104 0.097 0.105 0.112 0.110 0.108 0.092 0.545 0.437 0.585 0.547 0.549 0.598 0.525 0.413 0.529 0.428 0.390 0.412 0.185 0.353 0.404 0.428 0.266 0.185 0.911 0.945 0.928 0.941 0.936 0.926 0.952 0.968 0.936 0.963 0.937 0.936 0.923 0.951 0.940 0.918 0.949 0.968 0.351 0.371 0.400 0.365 0.299 0.243 0.467 0.485 0.318 0.311 0.346 0.165 0.287 0.365 0.310 0.181 0.314 0.334 0.167 0.155 0.170 0.170 0.151 0.137 0.153 0.195 0.151 0.164 0.209 0.106 0.168 0.193 0.145 0.100 0.188 0.182 0.043 0.067 0.066 0.051 0.041 0.035 0.084 0.029 0.032 0.032 0.028 0.008 0.033 0.021 0.050 0.013 0.023 0.008 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.825 0.827 0.832 0.009 0.589 0.797 0.349 0.010 0.651 0.797 0.326 0.015 0.675 0.805 0.352 69 0.126 0.127 1.000 0.122 0.133 1.000 0.121 0.142 1.000 1993 0.826 1994 0.824 1995 0.820 1996 0.812 1997 0.829 1998 0.815 1999 0.811 2000 0.823 2001 0.825 2002 0.806 2003 0.811 2004 0.803 2005 0.800 2006 0.797 Whole period 0.818 SWEDEN 1995 0.798 1996 0.795 1997 0.786 1998 0.783 1999 0.766 2000 0.789 2001 0.777 2002 0.777 2003 0.784 2004 0.764 2005 0.763 2006 0.748 Whole period 0.776 ALL COUNTRIES 1990 0.883 1991 0.885 1992 0.879 1993 0.879 1994 0.879 1995 0.888 1996 0.897 1997 0.888 1998 0.878 1999 0.868 2000 0.874 2001 0.881 2002 0.884 2003 0.885 2004 0.881 2005 0.881 2006 0.884 Whole period 0.882 Source: authors’ calculations 0.009 0.007 0.004 0.005 0.012 0.002 0.006 0.006 0.008 0.010 0.006 0.014 0.017 0.020 0.046 0.682 0.716 0.640 0.469 0.327 0.527 0.507 0.549 0.535 0.538 0.431 0.485 0.211 0.076 0.076 0.787 0.794 0.782 0.836 0.824 0.785 0.798 0.820 0.807 0.757 0.787 0.829 0.842 0.876 0.876 0.367 0.486 0.362 0.334 0.338 0.445 0.218 0.645 0.435 0.318 0.344 0.199 0.425 0.410 0.373 0.109 0.148 0.119 0.111 0.123 0.121 0.099 0.133 0.131 0.127 0.099 0.070 0.130 0.109 0.152 0.182 0.236 0.141 0.102 0.099 0.151 0.071 0.303 0.198 0.119 0.164 0.098 0.223 0.204 0.071 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.021 0.018 0.009 0.005 0.011 0.011 0.001 0.001 0.007 0.014 0.014 0.030 0.099 0.185 0.273 0.132 0.273 0.190 0.259 0.301 0.174 0.282 0.328 0.249 0.474 0.132 0.799 0.803 0.826 0.845 0.832 0.856 0.860 0.862 0.871 0.877 0.877 0.878 1.000 0.533 0.428 0.466 0.438 0.407 0.449 0.449 0.474 0.509 0.586 0.484 0.546 0.480 0.156 0.147 0.156 0.160 0.162 0.171 0.171 0.174 0.161 0.173 0.168 0.170 0.172 0.166 0.124 0.117 0.142 0.047 0.136 0.136 0.162 0.188 0.198 0.143 0.193 0.047 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.030 0.033 0.033 0.036 0.034 0.031 0.030 0.034 0.036 0.040 0.038 0.041 0.040 0.039 0.042 0.042 0.040 0.037 0.740 0.644 0.675 0.707 0.690 0.719 0.593 0.646 0.684 0.641 0.608 0.634 0.409 0.576 0.617 0.639 0.482 0.409 0.956 0.964 0.956 0.960 0.955 0.989 0.966 0.974 0.972 0.973 0.983 0.968 0.954 0.964 0.965 0.957 0.969 0.989 0.384 0.445 0.290 0.381 0.225 0.301 0.439 0.306 0.323 0.339 0.395 0.215 0.328 0.348 0.308 0.178 0.342 0.290 0.163 0.176 0.114 0.156 0.095 0.173 0.176 0.139 0.159 0.172 0.217 0.127 0.176 0.180 0.154 0.114 0.198 0.172 0.042 0.064 0.043 0.051 0.025 0.023 0.063 0.016 0.024 0.027 0.026 0.010 0.031 0.018 0.039 0.010 0.023 0.010 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 70 Annex 9 Technical efficiency change Crop farms (TF 1) Years SFA Mean St. Min Dev. BELGIUM 1990-1991 -0.002 0.022 -0.078 1991-1992 -0.007 0.038 -0.265 1992-1993 0.004 0.033 -0.120 1993-1994 0.005 0.025 -0.084 1994-1995 -0.011 0.026 -0.069 1995-1996 -0.009 0.044 -0.248 1996-1997 0.010 0.039 -0.090 1997-1998 1998-1999 1999-2000 0.008 0.038 -0.085 2000-2001 -0.009 0.037 -0.125 2001-2002 0.016 0.046 -0.208 2002-2003 0.031 0.053 -0.183 2003-2004 2004-2005 -0.014 0.076 -0.241 2005-2006 0.009 0.061 -0.139 Whole period ESTONIA 2004-2005 0.014 0.063 -0.119 2005-2006 -0.033 0.072 -0.385 Whole period 0.081 0.095 -0.409 FRANCE 1990-1991 0.008 0.047 -0.307 1991-1992 -0.022 0.058 -0.387 1992-1993 -0.028 0.057 -0.314 1993-1994 -0.003 0.056 -0.295 1994-1995 -0.008 0.055 -0.386 1995-1996 0.003 0.055 -0.232 1996-1997 -0.005 0.051 -0.241 1997-1998 -0.003 0.050 -0.220 1998-1999 -0.013 0.052 -0.316 1999-2000 -0.002 0.052 -0.258 2000-2001 -0.022 0.056 -0.324 2001-2002 0.007 0.061 -0.312 2002-2003 -0.002 0.063 -0.408 2003-2004 -0.001 0.063 -0.298 2004-2005 -0.017 0.060 -0.540 2005-2006 0.024 0.060 -0.399 Whole period GERMANY 1990-1991 0.011 0.059 -0.236 1991-1992 -0.006 0.061 -0.421 Max 0.092 0.086 0.121 0.073 0.046 0.091 0.250 71 Mean St. Dev. DEA Min Max 0.125 0.053 0.093 0.316 1.005 0.999 0.947 0.846 1.109 1.125 0.939 0.810 1.280 0.893 1.082 0.984 1.334 0.189 0.151 0.190 0.161 0.229 0.266 0.193 0.231 0.404 0.180 0.231 0.235 0.376 0.661 0.531 0.543 0.436 0.648 0.640 0.560 0.313 0.637 0.546 0.420 0.599 0.725 1.954 1.373 1.557 1.259 1.767 2.601 1.796 1.509 2.668 1.607 2.143 1.910 2.758 0.324 0.224 - 0.864 0.908 1.038 0.244 0.266 0.293 0.503 0.549 0.313 1.881 2.026 2.758 0.206 0.199 0.388 1.012 0.926 1.022 0.406 0.307 0.362 0.205 0.250 0.205 3.482 2.226 3.482 0.315 0.283 0.292 0.438 0.252 0.417 0.256 0.226 0.210 0.369 0.230 0.380 0.317 0.403 0.211 0.478 - 0.952 1.060 0.876 0.792 1.159 0.923 1.152 0.908 1.008 1.016 0.964 1.013 1.043 1.056 0.976 0.834 0.979 0.229 0.339 0.206 0.211 0.259 0.207 0.226 0.179 0.210 0.269 0.177 0.261 0.228 0.261 0.191 0.205 0.252 0.241 0.277 0.345 0.254 0.320 0.469 0.427 0.450 0.080 0.395 0.262 0.436 0.255 0.360 0.137 0.175 0.080 2.614 4.694 2.985 4.206 3.200 3.884 2.566 2.143 2.376 8.530 1.995 5.716 3.245 4.971 2.483 4.284 8.530 0.549 0.207 0.853 1.016 0.248 0.244 0.422 0.365 5.210 2.202 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 Whole period HUNGARY 2004-2005 2005-2006 Whole period ITALY 1990-1991 -0.026 0.000 -0.024 0.006 0.003 -0.012 0.014 -0.009 0.008 -0.035 0.017 0.018 -0.012 0.008 - 0.072 0.069 0.073 0.069 0.069 0.081 0.076 0.066 0.066 0.077 0.088 0.086 0.066 0.067 - -0.334 -0.473 -0.263 -0.246 -0.548 -0.526 -0.355 -0.478 -0.321 -0.545 -0.582 -0.485 -0.285 -0.386 - 0.432 0.379 0.464 0.435 0.328 0.403 0.566 0.300 0.364 0.336 0.624 0.741 0.333 0.364 - -0.033 0.011 - 0.094 0.095 - -0.744 -0.564 - 0.365 0.597 - 0.944 1.014 0.840 0.866 1.120 1.047 1.167 1.741 0.983 0.978 0.999 0.973 1.049 0.740 1.072 0.483 0.237 0.253 0.315 0.261 0.302 0.295 0.497 0.214 0.251 0.429 0.525 0.238 0.227 0.412 0.043 0.291 0.423 0.328 0.041 0.092 0.465 0.476 0.455 0.246 0.030 0.185 0.373 0.198 0.030 4.724 2.706 3.888 6.841 2.986 3.493 2.815 5.417 2.923 2.874 8.441 14.675 3.088 2.940 14.675 0.913 0.838 0.876 0.413 0.481 0.449 0.024 0.061 0.024 6.228 11.060 11.060 1.101 1.573 0.084 1.080 0.990 1.121 0.829 1.738 0.348 0.377 0.459 0.329 0.948 0.228 0.098 0.143 0.047 0.241 1.262 0.972 0.031 1.331 0.983 0.312 1.019 0.577 0.113 1.068 1.282 0.395 0.942 0.040 0.194 1.053 1.041 0.498 4.787 0.065 0.248 1.240 1.415 0.125 0.678 1.907 0.526 1.188 0.059 0.160 Whole period 1.142 1.062 0.031 66.30 0 4.088 4.802 7.999 4.992 13.05 1 35.36 7 39.92 1 23.11 1 4.761 38.89 6 6.535 93.47 3 56.78 5 9.204 24.14 3 93.47 3 THE NETHERLANDS 1990-1991 0.112 0.352 -0.575 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996 0.013 -0.012 -0.009 -0.009 -0.004 0.070 0.055 0.068 0.066 0.081 -0.279 -0.327 -0.571 -0.470 -0.651 0.593 0.292 0.389 0.451 0.386 -0.012 0.070 -0.376 0.408 1996-1997 -0.005 0.078 -0.707 0.427 1997-1998 -0.003 0.074 -0.374 0.601 0.006 -0.004 0.076 0.073 -0.454 -0.653 0.632 0.345 0.004 0.000 0.076 0.080 -0.407 -0.530 0.645 0.540 -0.001 0.108 -0.324 0.661 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 -0.003 0.012 0.094 0.083 -0.477 -0.367 0.637 0.427 -0.002 0.083 -0.582 0.508 72 2.546 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 Whole period SWEDEN 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 Whole period ALL COUNTRIES 1990-1991 0.011 0.068 1991-1992 -0.015 0.059 1992-1993 -0.012 0.068 1993-1994 -0.005 0.065 1994-1995 -0.007 0.077 1995-1996 -0.006 0.070 1996-1997 -0.003 0.073 1997-1998 -0.005 0.073 1998-1999 0.001 0.076 1999-2000 -0.004 0.070 2000-2001 0.000 0.073 2001-2002 -0.005 0.077 2002-2003 0.006 0.076 2003-2004 -0.001 0.086 2004-2005 -0.004 0.080 2005-2006 0.005 0.080 Whole period Source: authors’ calculations -0.024 0.057 -0.041 0.135 0.067 -0.224 0.253 0.045 0.001 -0.459 0.502 0.089 0.115 -0.006 -0.025 0.047 0.416 - - -0.316 -0.353 -0.617 -0.522 -0.698 -0.470 -0.746 -0.497 -0.481 -0.693 -0.421 -0.578 -0.538 -0.535 -0.722 -0.625 - 0.640 0.337 0.442 0.475 0.438 0.634 0.474 0.636 0.672 0.446 0.684 0.594 0.687 0.686 0.474 0.559 - 73 -0.140 0.058 0.048 0.154 0.031 0.058 0.044 0.062 0.060 -0.002 0.070 0.359 0.212 0.200 0.253 0.216 0.177 0.301 0.266 0.061 0.211 0.395 0.277 0.330 0.246 0.280 0.321 -0.678 -0.457 -0.573 -0.526 -0.359 -0.614 -0.448 -0.612 -0.138 -0.767 -0.318 -0.570 -0.541 -0.580 -0.593 -0.767 1.273 0.710 0.585 0.899 1.294 0.398 1.635 1.132 0.276 0.398 2.308 1.906 1.585 0.743 1.189 2.546 1.774 -0.817 21.72 7 0.536 1.271 3.188 5.000 1.543 8.346 2.556 1.476 2.984 1.103 1.000 0.222 0.353 0.512 0.523 0.313 0.637 0.364 0.301 0.336 0.275 0.634 -0.618 -0.790 -0.873 -0.868 -0.729 -0.603 -0.540 -0.611 -0.632 -0.821 -0.873 Annex 10 Technical efficiency change Dairy farms (TF 41) Years SFA Mean St. Min Dev. BELGIUM 1990-1991 -0.015 0.041 -0.177 1991-1992 0.018 0.053 -0.087 1992-1993 0.001 0.034 -0.221 1993-1994 -0.005 0.040 -0.312 1994-1995 -0.024 0.083 -0.892 1995-1996 -0.009 0.082 -0.168 1996-1997 0.017 0.036 -0.137 1997-1998 1998-1999 1999-2000 -0.001 0.035 -0.142 2000-2001 -0.007 0.049 -0.551 2001-2002 -0.017 0.053 -0.380 2002-2003 0.015 0.051 -0.136 2003-2004 -0.044 0.047 -0.095 2004-2005 -0.009 0.059 -0.182 2005-2006 -0.015 0.068 -0.425 Whole period ESTONIA 2004-2005 -0.008 0.036 -0.211 2005-2006 -0.011 0.046 -0.226 Whole period FRANCE 1990-1991 -0.009 0.058 -0.273 1991-1992 0.006 0.068 -0.670 1992-1993 -0.001 0.057 -0.556 1993-1994 0.001 0.046 -0.329 1994-1995 -0.006 0.048 -0.702 1995-1996 -0.016 0.061 -0.681 1996-1997 -0.001 0.058 -0.319 1997-1998 0.009 0.053 -0.279 1998-1999 -0.007 0.053 -0.547 1999-2000 0.001 0.069 -0.821 2000-2001 -0.008 0.068 -0.477 2001-2002 -0.003 0.069 -0.862 2002-2003 -0.012 0.070 -0.591 2003-2004 -0.009 0.057 -0.294 2004-2005 0.007 0.055 -0.229 2005-2006 -0.019 0.074 -0.478 Whole period - DEA Min Max Mean St. Dev. 0.094 0.441 0.107 0.268 0.130 0.864 0.140 1.027 0.988 1.026 1.034 0.989 0.975 1.026 0.947 1.016 1.046 0.993 0.960 1.022 0.180 0.205 0.151 0.166 0.197 0.168 0.143 0.123 0.130 0.154 0.149 0.144 0.169 0.459 0.544 0.562 0.669 0.032 0.602 0.559 0.604 0.621 0.707 0.335 0.408 0.653 1.577 2.437 1.456 1.826 1.823 1.522 1.542 1.365 1.433 1.998 1.545 1.603 1.645 0.864 1.017 1.008 0.166 0.169 0.166 0.497 0.380 0.032 1.998 1.987 2.437 0.147 0.187 - 1.110 0.966 1.056 0.225 0.186 0.219 0.655 0.546 0.546 1.928 1.525 1.928 0.754 0.311 0.520 0.537 0.312 0.649 0.434 0.482 0.257 0.468 0.767 0.338 0.818 0.263 0.266 0.598 - 1.008 0.950 0.983 1.012 0.930 1.042 0.948 0.891 1.005 1.117 0.987 0.951 1.040 0.987 0.941 0.941 0.984 0.245 0.189 0.161 0.159 0.132 0.203 0.145 0.126 0.148 0.175 0.332 0.155 1.143 0.127 0.136 0.174 0.341 0.257 0.208 0.337 0.520 0.181 0.232 0.498 0.520 0.353 0.111 0.330 0.030 0.340 0.510 0.280 0.355 0.030 6.939 4.198 2.746 2.953 2.105 5.081 2.328 2.004 1.936 2.372 7.626 2.175 35.522 1.707 1.758 3.504 35.552 0.258 0.213 0.701 0.952 0.158 0.151 0.202 0.361 2.027 1.664 0.268 0.095 0.316 0.256 0.039 0.396 0.347 - Max GERMANY 1990-1991 1991-1992 -0.013 0.010 0.050 0.047 -0.409 -0.180 74 1992-1993 -0.016 1993-1994 -0.012 1994-1995 -0.012 1995-1996 -0.021 1996-1997 0.017 1997-1998 0.010 1998-1999 -0.005 1999-2000 0.004 2000-2001 -0.012 2001-2002 -0.017 2002-2003 -0.013 2003-2004 0.006 2004-2005 -0.011 2005-2006 0.004 Whole period HUNGARY 2004-2005 0.008 2005-2006 0.017 Whole period ITALY 1990-1991 0.000 1991-1992 -0.001 1992-1993 0.001 1993-1994 -0.001 1994-1995 0.000 1995-1996 -0.001 1996-1997 -0.002 1997-1998 0.000 1998-1999 0.000 1999-2000 0.001 2000-2001 0.003 2001-2002 -0.002 2002-2003 -0.013 2003-2004 -0.001 2004-2005 0.001 2005-2006 0.002 Whole period THE NETHERLANDS 1990-1991 1991-1992 1992-1993 1993-1994 1994-1995 0.003 0.004 0.002 0.004 0.018 0.050 0.056 0.064 0.061 0.058 0.066 0.062 0.051 0.053 0.060 0.062 0.062 0.057 0.056 - -0.288 -0.449 -0.397 -0.385 -0.292 -0.770 -0.382 -0.361 -0.295 -0.434 -0.392 -0.462 -0.334 -0.431 - 0.170 0.313 0.252 0.360 0.349 0.332 0.528 0.324 0.187 0.383 0.435 0.384 0.366 0.301 - 1.030 0.770 1.052 0.670 1.298 0.860 0.910 0.846 1.050 0.980 1.017 1.190 0.957 1.109 0.997 0.148 0.155 0.269 0.196 0.252 0.165 0.187 0.162 0.167 0.153 0.468 0.510 0.347 0.255 0.323 0.405 0.216 0.386 0.228 0.684 0.106 0.295 0.375 0.559 0.570 0.233 0.144 0.217 0.277 0.106 1.643 1.941 3.003 1.643 3.483 2.431 2.237 2.074 2.157 1.862 5.758 5.973 2.885 3.696 5.973 0.063 0.052 - -0.175 -0.092 - 0.241 0.199 - 0.997 1.018 1.008 0.265 0.226 0.244 0.519 0.579 0.519 2.242 1.691 2.242 0.028 0.022 0.024 0.043 0.040 0.034 0.030 0.030 0.027 0.029 0.025 0.022 0.044 0.030 0.026 0.021 - -0.098 -0.242 -0.433 -0.849 -0.868 -0.329 -0.460 -0.311 -0.353 -0.387 -0.133 -0.353 -0.550 -0.203 -0.194 -0.143 - 0.791 0.159 0.255 0.240 0.825 0.834 0.359 0.383 0.301 0.353 0.424 0.106 0.095 0.288 0.254 0.213 - 1.021 0.898 0.925 0.871 1.120 0.875 0.905 1.068 1.021 0.998 0.955 0.857 0.963 0.910 1.013 1.016 0.960 0.506 0.216 0.247 0.249 0.838 0.931 0.244 0.325 0.252 0.300 0.569 0.216 0.286 0.282 0.287 0.239 0.445 0.406 0.225 0.282 0.023 0.030 0.227 0.183 0.349 0.230 0.303 0.257 0.226 0.195 0.244 0.361 0.370 0.023 18.265 2.801 3.229 3.281 30.314 27.720 3.163 6.868 3.296 4.026 4.938 2.805 3.470 2.729 5.034 2.735 30.314 0.034 0.250 0.109 0.151 0.127 0.176 0.433 0.003 0.002 0.002 0.100 0.633 0.048 0.006 0.080 0.490 0.279 0.302 0.246 0.369 0.019 0.026 0.022 0.032 75 0.083 0.226 0.124 0.076 0.082 0.083 0.097 0.332 0.397 0.163 0.360 1995-1996 0.027 0.028 0.043 0.010 0.005 0.001 0.039 0.014 0.026 0.004 0.055 0.010 0.001 0.016 0.006 0.072 SWEDEN 1995-1996 0.014 0.274 1996-1997 0.004 0.226 1997-1998 0.030 0.416 1998-1999 0.005 0.072 0.259 0.231 2001-2002 0.010 0.026 2002-2003 0.050 0.324 2003-2004 0.011 0.019 0.249 0.002 0.018 0.253 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 Whole period 1999-2000 2000-2001 2004-2005 2005-2006 Whole period 0.049 0.037 0.012 0.066 0.071 0.067 0.086 0.050 0.378 0.255 0.202 0.287 0.308 0.555 0.246 0.141 0.052 0.359 0.356 0.280 0.169 0.383 0.645 0.645 0.124 0.010 0.105 0.258 0.005 0.111 0.196 0.122 0.312 0.053 0.051 0.101 0.029 0.060 0.213 0.128 0.490 0.014 0.118 0.035 0.741 0.114 0.146 0.324 0.117 0.092 0.142 0.835 0.001 0.131 0.580 0.838 0.687 0.769 0.654 0.647 0.754 0.665 0.543 0.685 0.400 - 3.300 0.122 0.295 1.699 0.129 0.126 0.197 0.199 3.415 0.003 0.038 1.788 0.055 0.447 1.601 0.107 0.456 3.402 0.008 0.162 2.046 0.081 0.120 0.153 0.012 0.033 0.135 76 0.418 0.835 5.867 1.339 0.989 2.486 1.000 0.129 0.134 0.172 0.178 0.478 0.208 0.194 0.303 0.343 0.634 0.466 0.350 0.128 0.407 0.583 0.428 0.268 0.570 0.640 0.640 0.391 0.560 0.752 0.491 0.708 0.582 0.747 0.833 0.726 0.615 0.542 0.402 - 1.728 0.450 0.298 0.466 0.309 0.748 0.277 0.936 1.025 0.471 1.428 1.428 0.921 6.702 0.690 1.461 3.741 2.741 0.553 0.382 0.962 0.615 1.000 0.838 ALL COUNTRIES 1990-1991 -0.005 1991-1992 0.003 1992-1993 -0.002 1993-1994 -0.003 1994-1995 -0.006 1995-1996 -0.008 1996-1997 0.003 1997-1998 0.002 1998-1999 -0.003 1999-2000 0.002 2000-2001 -0.003 2001-2002 -0.007 2002-2003 -0.007 2003-2004 -0.002 2004-2005 -0.003 2005-2006 -0.002 Whole period Source: authors’ calculations 0.039 0.040 0.038 0.044 0.045 0.046 0.044 0.046 0.045 0.043 0.043 0.044 0.046 0.045 0.041 0.041 - -0.302 -0.395 -0.354 -0.726 -0.735 -0.402 -0.456 -0.636 -0.383 -0.573 -0.381 -0.690 -0.449 -0.389 -0.267 -0.354 - 77 0.833 0.657 0.271 0.331 0.304 0.655 0.732 0.301 0.538 0.398 0.381 0.509 0.335 0.668 0.355 0.335 0.368 - Annex 11 Scale efficiency change Crop farms (TF 1) Years Mean BELGIUM 1990-1991 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 Whole period 1.002 1.020 St. Dev. 0.085 0.087 Dairy farms (TF 41) DEA Max Mean Min 0.673 0.788 1.264 1.305 0.980 1.003 St. Dev. 0.137 0.160 Min 0.414 0.637 Max 1.998 2.188 0.948 0.990 1.096 1.061 0.901 0.858 1.193 0.931 1.006 1.008 1.160 0.114 0.100 0.148 0.125 0.113 0.170 0.308 0.100 0.150 0.148 0.291 0.589 0.634 0.827 0.640 0.560 0.313 0.706 0.575 0.483 0.682 0.726 1.432 1.256 1.597 1.535 1.118 1.423 2.470 1.313 1.428 1.662 2.469 1.014 1.012 0.962 0.999 0.999 0.971 0.984 1.029 0.992 0.947 1.028 0.114 0.099 0.121 0.096 0.083 0.080 0.091 0.118 0.107 0.101 0.126 0.561 0.785 0.030 0.602 0.768 0.655 0.623 0.666 0.335 0.526 0.705 1.456 1.660 1.359 1.465 1.346 1.254 1.282 1.921 1.414 1.519 1.663 0.920 0.965 0.129 0.166 0.516 0.607 1.355 1.732 0.901 1.007 0.140 0.154 0.452 0.472 1.569 1.896 1.016 0.190 0.313 2.470 0.995 0.120 0.030 2.188 ESTONIA 2004-2005 2005-2006 Whole period FRANCE 1990-1991 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 Whole period 1.026 0.249 0.294 2.788 1.061 0.125 0.869 1.514 0.948 1.005 0.155 0.212 0.377 0.294 1.512 2.788 0.975 1.023 0.105 0.123 0.691 0.691 1.525 1.525 0.952 1.078 0.886 0.840 1.121 0.947 1.098 0.935 1.042 0.993 0.969 1.015 1.037 1.052 0.993 0.858 0.986 0.179 0.288 0.152 0.185 0.222 0.162 0.174 0.132 0.158 0.181 0.130 0.201 0.184 0.226 0.148 0.176 0.201 0.235 0.308 0.356 0.250 0.272 0.510 0.443 0.481 0.107 0.437 0.262 0.344 0.256 0.374 0.156 0.175 0.107 2.720 4.694 2.364 4.199 3.174 3.040 2.675 1.754 2.060 5.609 1.869 2.742 2.906 5.002 2.451 4.064 5.609 1.010 0.991 1.009 1.007 0.976 1.018 0.999 0.966 0.992 1.076 0.979 0.939 1.075 0.989 0.966 0.959 0.997 0.215 0.157 0.128 0.117 0.093 0.157 0.111 0.104 0.100 0.141 0.221 0.123 0.299 0.103 0.109 0.155 0.355 0.292 0.252 0.444 0.535 0.226 0.344 0.494 0.547 0.309 0.165 0.351 0.028 0.030 0.482 0.280 0.434 0.028 6.770 4,464 2.838 2.341 1.706 4.347 1.790 2.351 1.668 2.372 6.144 1.991 40.722 1.467 1.574 3.504 40.722 0.961 1.079 0.118 0.186 0.502 0.419 2.628 2.024 0.851 0.965 0.109 0.077 0.222 0.538 1.422 1.381 GERMANY 1990-1991 1991-1992 1992-1993 1993-1994 1994-1995 1.027 1.003 0.874 0.320 0.124 0.202 0.186 0.250 0.370 78 3.159 2.262 3.044 1.020 0.908 1.020 0.076 0.106 0.209 0.501 0.254 0.463 1.372 1.323 2.562 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 Whole period 0.902 1.082 1.024 1.126 1.523 0.991 0.978 0.976 0.973 1.021 0.792 1.055 0.393 0.240 0.251 0.243 0.532 0.170 0.191 0.444 0.282 0.219 0.234 0.340 0.390 0.045 0.111 0.474 0.613 0.501 0.246 0.019 0.185 0.304 0.256 9.546 2.254 2.859 2.568 4.466 2.286 2.613 11.044 4.685 3.385 3.294 0.019 11.044 0.725 1.202 0.907 0.936 0.871 1.033 0.992 1.021 1.170 0.927 1.092 1.008 0.195 0.216 0.146 0.141 0.133 0.124 0.118 0.470 0.569 0.381 0.212 0.295 0.160 0.579 0.084 0.302 0.366 0.446 0.598 0.136 0.123 0.145 0.277 0.084 2.088 2.358 2.032 1.834 1.884 1.660 1.756 4.172 7.230 4.240 3.696 7.230 HUNGARY 2004-2005 2005-2006 Whole period 0.970 0.955 0.963 0.167 0.246 0.209 0.135 0.138 0.135 2.268 6.131 6.131 0.996 0.978 0.987 0.131 0.083 0.108 0.768 0.579 0.579 1.875 1.198 1.875 ITALY 1990-1991 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 Whole period 1.036 1.013 1.035 1.051 0.895 1.649 1.198 1.401 0.948 1.085 1.089 1.033 1.037 1.248 0.671 1.635 0.971 0.238 0.243 0.256 0.205 0.868 0.746 1.071 0.456 0.284 0.682 0.382 4.742 1.965 0.341 0.887 1.104 0.968 THE NETHERLANDS 1990-1991 0.046 0.277 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 0.003 0.015 -0.005 0.059 0.030 -0.082 0.081 -0.008 0.004 -0.225 0.205 0.035 -0.015 0.251 0.103 0.094 0.121 0.130 0.115 0.183 0.120 0.035 0.190 0.240 0.140 0.172 0.152 28.954 0.232 4.523 0.116 0.232 0.106 0.238 0.036 0.409 0.151 0.041 0.261 0.064 0.397 0.197 0.035 0.288 3.622 4.852 3.269 12.641 27.320 49.912 21.746 4.248 28.327 9.447 93.506 90.593 6.239 12.718 0.035 93.506 0.520 0.564 -0.309 -0.382 -0.432 -0.412 -0.495 -0.425 -0.582 -0.138 -0.772 -0.256 -0.303 -0.559 79 1.013 0.963 1.017 0.946 1.103 1.000 0.964 1.025 1.023 1.007 1.041 0.921 0.956 0.959 1.032 1.017 0.291 0.144 0.164 0.152 0.598 1.108 0.176 0.142 0.148 0.137 0.393 0.136 0.157 0.163 0.211 0.180 0.458 10.986 0.455 2.339 0.455 0.057 0.045 0.220 0.328 0.431 0.400 0.479 0.290 0.258 0.332 0.334 0.487 0.388 2.238 2.013 22.038 36.351 2.780 2.157 2.310 2.574 4.593 1.808 1.925 2.299 4.427 2.571 0.999 0.368 0.045 36.351 2.448 -0.012 0.058 1.216 0.016 0.055 0.468 0.171 0.419 0.388 0.603 0.852 0.123 1.506 0.698 0.165 0.103 1.366 0.991 1.632 0.019 -0.038 -0.011 0.009 -0.002 -0.026 -0.005 0.018 0.006 -0.082 0.020 0.083 0.055 0.056 0.057 0.061 0.065 0.068 0.078 0.049 0.079 0.096 0.108 0.104 -0.216 -0.254 -0.291 -0.199 -0.596 -0.410 -0.350 -0.110 -0.407 -0.425 -0.267 -0.100 0.310 0.332 0.379 0.148 0.216 0.263 0.292 0.230 0.316 0.309 0.336 0.133 0.502 0.652 2004-2005 2005-2006 Whole period -0.014 -0.005 0.125 0.155 -0.377 -0.487 0.618 0.877 -0.091 0.030 0.108 0.123 -0.638 -0.640 0.082 1.272 0.013 0.181 0.772 2.448 -0.004 0.086 0.640 1.272 1995-1996 0.266 0.983 0.027 0.188 -0.022 0.117 -0.110 0.158 0.557 0.810 1.826 1996-1997 - 11.821 0.640 - 0.505 0.355 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 Whole period 0.006 0.002 0.085 -0.005 -0.024 -0.017 0.059 0.015 -0.031 SWEDEN 0.206 0.338 0.446 0.194 0.269 0.193 0.219 0.162 0.159 0.026 0.366 -0.814 -0.871 -0.851 -0.704 -0.502 -0.604 -0.551 -0.774 -0.641 0.871 ALL COUNTRIES 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 Whole period Source: authors’ calculations 80 0.698 3.188 5.000 1.003 2.257 1.402 1.395 1.093 0.720 1.000 0.137 0.003 0.028 -0.007 -0.018 0.013 -0.063 0.071 -0.010 0.006 0.399 0.322 0.135 0.116 0.138 0.115 0.104 0.134 0.081 0.197 -0.626 -0.822 -0.597 -0.710 -0.775 -0.644 -0.617 -0.517 -0.322 0.822 0.652 3.674 1.659 0.669 0.882 1.080 0.653 0.269 0.822 0.264 1 Annex 12 Allocative efficiency change Crop farms (TF 1) Years SFA Mean St. Min Dev. BELGIUM 1990-1991 0.002 0.018 -0.047 1991-1992 0.001 0.016 -0.030 1992-1993 -0.011 0.023 -0.087 1993-1994 -0.021 0.052 -0.204 1994-1995 0.024 0.056 -0.051 1995-1996 0.006 0.021 -0.037 1996-1997 -0.009 0.014 -0.046 1997-1998 1998-1999 1999-2000 -0.013 0.041 -0.170 2000-2001 0.004 0.025 -0.033 2001-2002 0.002 0.020 -0.028 2002-2003 -0.025 0.040 -0.135 2003-2004 2004-2005 -0.003 0.025 -0.056 2005-2006 0.006 0.022 -0.029 Whole period ESTONIA 2004-2005 0.002 0.074 -0.290 2005-2006 -0.007 0.063 -0.164 Whole period FRANCE 1990-1991 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 Whole period GERMANY 1990-1991 1991-1992 - 81 Max 0.059 0.032 0.033 0.037 0.224 0.075 0.026 0.032 0.072 0.054 0.090 0.028 0.050 0.335 0.313 - Mean 0.690 1.127 0.844 1.082 0.943 1.026 0.838 1.291 1.052 0.985 0.862 0.945 0.877 0.902 1.034 0.948 0.950 1.371 1.141 St. Dev. DEA Min 1.510 2.693 5.548 3.238 3.767 5.378 1.791 5.226 4.131 2.698 1.999 3.511 2.826 4.355 12.619 4.863 0.239 0.204 0.302 0.032 0.076 0.058 0.025 0.062 0.100 0.045 0.146 0.097 0.027 0.026 0.107 0.020 0.046 0.050 0.020 0.413 0.592 0.413 Max 7.984 14.533 50.471 23.278 31.083 45.294 10.417 40.455 32.055 14.441 13.750 23.333 18.875 24.233 113.833 113.833 1.986 2.298 2.298 0.812 0.223 0.238 3.610 0.781 0.266 0.199 4.212 0.736 0.193 0.130 3.156 1.485 0.332 0.379 5.611 0.964 0.211 0.256 4.234 1.080 0.215 0.287 2.945 0.985 0.244 0.323 4.587 1.002 0.207 0.237 4.250 0.846 0.199 0.232 3.348 1.022 0.209 0.230 3.620 1.212 0.235 0.307 4.600 0.937 0.242 -2.265 1.740 0.647 0.159 0.160 2.623 0.887 0.217 0.255 3.836 0.636 0.161 0.154 3.044 1.721 1.084 0.060 15.152 0.986 0.443 -2.265 15.152 2.480 1.195 1.011 0.367 0.548 0.097 12.190 5.744 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 Whole period HUNGARY 2004-2005 0.002 2005-2006 -0.014 Whole period ITALY 1990-1991 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 Whole period THE NETHERLANDS 1990-1991 0.004 1991-1992 -0.003 1992-1993 -0.001 1993-1994 -0.010 1994-1995 0.020 1995-1996 0.013 1996-1997 0.001 1997-1998 -0.010 1998-1999 -0.010 1999-2000 0.014 2000-2001 0.023 - - - 0.058 0.061 - -0.278 -0.438 - 0.317 0.294 - - - - 0.017 0.036 0.027 0.036 0.042 0.040 0.027 0.027 0.044 0.015 0.071 -0.077 -0.431 -0.139 -0.147 -0.226 -0.123 -0.104 -0.149 -0.323 -0.065 -0.190 0.126 0.094 0.096 0.167 0.196 0.333 0.155 0.116 0.174 0.129 0.431 82 0.825 0.730 0.761 1.213 0.654 1.200 0.917 0.660 1.411 0.648 0.493 1.217 1.001 1.254 0.960 0.823 1.040 0.922 1.014 0.996 1.061 0.670 1.098 0.983 0.928 0.973 0.973 0.982 1.030 0.986 1.615 1.033 0.948 1.014 0.982 0.204 0.635 0.022 0.150 -0.238 -0.135 0.595 -0.137 -0.371 0.095 0.509 0.145 0.283 0.561 0.734 0.154 0.358 0.655 0.238 0.345 0.283 0.123 0.388 0.288 0.376 0.632 0.886 0.237 0.663 7.076 2.353 0.413 0.326 0.538 0.379 0.592 0.524 0.906 0.720 0.894 1.012 3.753 0.665 0.663 0.577 2.187 1.077 2.044 0.219 0.164 0.125 0.149 0.266 0.329 0.148 0.077 0.398 0.151 0.031 0.089 0.238 0.201 0.148 0.137 0.110 0.222 0.098 0.034 0.133 0.108 0.142 0.031 0.236 0.247 0.236 0.007 0.019 0.053 0.056 0.056 0.084 0.058 0.051 0.040 0.030 0.074 0.055 0.031 0.043 0.098 0.029 0.007 -0.857 -0.874 -0.555 -0.603 -0.592 -0.734 -0.388 -0.750 -0.814 -0.396 -0.774 1.606 5.618 6.280 10.674 2.539 9.338 7.928 5.148 8.123 5.424 1.899 7.731 5.977 3.838 12.190 26.191 4.035 26.191 96.500 38.720 7.698 7.213 11.286 8.500 17.188 16.000 35.200 17.750 24.813 37.529 61.063 14.190 19.000 19.250 96.500 8.479 26.613 1.879 0.813 0.219 0.350 1.652 3.639 0.804 0.224 1.555 2001-2002 -0.006 0.067 2002-2003 0.011 0.063 2003-2004 -0.015 0.076 2004-2005 0.014 0.059 2005-2006 0.012 0.063 Whole period 0.003 0.046 SWEDEN 1995-1996 0.088 0.573 1996-1997 0.001 0.115 1997-1998 -0.062 0.179 1998-1999 0.062 0.304 1999-2000 0.049 0.293 2000-2001 0.029 0.210 2001-2002 0.033 0.316 2002-2003 0.037 0.205 2003-2004 -0.015 0.166 2004-2005 0.002 0.170 2005-2006 0.001 0.159 Whole period 0.021 0.269 ALL COUNTRIES 1990-1991 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 Whole period Source: authors’ calculations -0.250 -0.361 -0.429 -0.166 -0.319 -0.431 0.411 0.355 0.566 0.305 0.245 0.566 -0.164 -0.184 -0.162 0.119 0.559 0.089 0.170 0.411 0.248 0.494 0.348 0.750 -0.801 -0.701 -0.804 -0.912 -0.720 -0.912 0.385 4.023 1.433 5.289 2.503 26.613 -0.610 -0.404 -0.726 -0.755 -0.856 -0.719 -0.471 -0.460 -0.625 -0.605 -0.631 -0.856 6.763 0.531 0.538 2.259 2.528 1.297 2.843 1.519 0.928 1.378 0.869 1.000 0.166 -0.284 0.184 -0.059 -0.109 -0.141 0.175 -0.004 -0.092 -0.156 0.243 -0.007 0.475 0.209 0.221 0.285 0.256 0.200 0.333 0.231 0.206 0.219 0.268 0.314 -0.628 -0.776 -0.476 -0.789 -0.798 -0.659 -0.350 -0.812 -0.879 -0.652 -0.885 -0.885 2.941 1.366 0.761 1.616 1.446 0.791 3.766 2.086 1.410 1.175 1.495 1.000 - - 83 Annex 13 Allocative efficiency change Dairy farms (TF 41) Years SFA Mean St. Min Dev. BELGIUM 1990-1991 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 Whole period ESTONIA 2004-2005 2005-2006 Whole period FRANCE 1990-1991 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 Whole period GERMANY 1990-1991 Max Mean St. Dev. DEA Min Max - 0.690 1.127 0.844 1.082 0.943 1.026 0.838 1.291 1.052 0.985 0.862 0.945 0.877 1.510 2.693 5.548 3.238 3.767 5.378 1.791 5.226 4.131 2.698 1.999 3.511 2.826 0.032 0.076 0.058 0.025 0.062 0.100 0.045 0.146 0.097 0.027 0.026 0.107 0.020 7.984 14.533 50.471 23.278 31.083 45.294 10.417 40.455 32.055 14.441 13.750 23.333 18.875 0.902 0.046 24.233 - - - - 0.948 4.355 12.61 9 4.863 0.003 0.005 - 0.071 0.041 - -0.242 -0.129 - 0.396 0.188 - 1.005 1.020 1.013 0.157 0.146 0.152 0.669 0.530 0.530 1.564 1.449 1.564 - - - - 1.056 0.563 0.945 0.413 0.621 0.896 0.556 1.885 0.928 0.710 0.536 0.497 0.842 0.452 1.076 0.450 0.769 0.135 0.078 0.099 0.086 0.094 0.115 0.083 0.696 0.130 0.088 0.067 0.083 0.167 0.059 0.123 0.066 0.398 0.538 0.295 0.473 0.238 0.277 0.372 0.309 0.383 0.342 0.342 0.147 0.111 0.292 0.211 0.568 0.211 0.111 2.040 1.285 1.917 2.577 1.850 1.787 2.000 6.869 1.873 1.332 1.147 1.765 3.257 1.279 1.501 1.279 6.869 0.004 0.019 -0.082 0.128 1.476 0.314 0.251 3.691 84 1.034 0.050 113.833 0.020 113.833 1991-1992 -0.005 1992-1993 0.002 1993-1994 0.002 1994-1995 0.000 1995-1996 0.007 1996-1997 -0.005 1997-1998 -0.013 1998-1999 -0.003 1999-2000 0.005 2000-2001 0.011 2001-2002 0.000 2002-2003 0.003 2003-2004 -0.001 2004-2005 0.004 2005-2006 -0.004 Whole period HUNGARY 2004-2005 0.042 2005-2006 0.006 Whole period ITALY 1990-1991 0.000 1991-1992 0.000 1992-1993 -0.005 1993-1994 -0.011 1994-1995 0.005 1995-1996 0.006 1996-1997 -0.002 1997-1998 -0.018 1998-1999 -0.018 1999-2000 0.003 2000-2001 0.000 2001-2002 0.001 2002-2003 0.026 2003-2004 0.003 2004-2005 -0.038 2005-2006 -0.002 Whole period THE NETHERLANDS 1990-1991 0.001 1991-1992 0.004 1992-1993 -0.007 1993-1994 -0.002 1994-1995 -0.004 1995-1996 -0.012 1996-1997 0.020 1997-1998 -0.017 1998-1999 -0.009 0.027 0.028 0.020 0.019 0.030 0.016 0.026 0.030 0.034 0.032 0.018 0.017 0.023 0.023 0.020 - -0.308 -0.081 -0.098 -0.099 -0.533 -0.103 -0.220 -0.210 -0.472 -0.077 -0.098 -0.055 -0.265 -0.237 -0.089 - 0.073 0.313 0.179 0.093 0.166 0.115 0.188 0.107 0.102 0.484 0.064 0.104 0.169 0.230 0.233 - 1.153 0.939 1.360 0.551 1.449 0.993 1.086 1.120 1.282 0.874 1.027 0.947 0.952 1.070 0.891 1.046 0.204 0.132 0.263 0.241 0.380 0.216 0.171 0.341 0.321 0.173 0.243 0.218 0.231 0.269 0.206 0.341 0.104 0.327 0.290 0.167 0.346 0.176 0.164 0.225 0.260 0.215 0.349 0.203 0.258 0.323 0.197 0.104 3.285 2.501 3.118 2.639 3.546 4.762 3.041 4.627 5.129 3.681 5.806 4.368 3.580 3.469 3.402 5.806 0.132 0.109 - -0.403 -0.581 - 0.577 0.606 - 0.929 0.913 0.920 0.232 0.169 0.199 0.525 0.460 0.460 2.257 1.392 2.257 0.094 0.086 0.069 0.068 0.069 0.072 0.063 0.074 0.082 0.086 0.085 0.096 0.085 0.108 0.099 0.082 - -0.335 -0.280 -0.169 -0.192 -0.215 -0.306 -0.213 -0.321 -0.359 -0.283 -0.359 -0.318 -0.332 -0.353 -0.381 -0.168 - 0.204 0.284 0.178 0.260 0.211 0.156 0.157 0.319 0.207 0.347 0.199 0.398 0.280 0.306 0.423 0.319 - 0.989 1.002 1.014 0.743 1.103 0.969 0.984 0.908 0.986 1.100 1.037 1.013 1.464 1.035 0.952 1.005 0.998 0.214 0.224 0.226 0.179 0.209 0.185 0.159 0.219 0.284 0.375 1.314 0.208 0.588 0.307 0.307 0.233 0.431 0.301 0.333 0.274 0.292 0.220 0.184 0.468 0.187 0.276 0.150 0.084 0.273 0.463 0.269 0.179 0.285 0.084 4.087 6.748 3.886 2.187 3.167 3.385 3.309 4.000 8.542 10.243 13.754 2.780 4.549 3.780 5.794 3.157 13.754 -0.051 0.093 0.069 0.307 -0.251 -0.080 0.010 0.366 -0.519 0.105 0.125 0.131 0.122 0.081 0.107 0.127 0.179 0.074 -0.433 -0.686 -0.503 -0.184 -0.592 -0.456 -0.456 -0.335 -0.755 0.412 1.257 0.682 1.094 0.546 0.336 1.090 0.932 -0.188 0.027 0.015 0.022 0.018 0.028 0.041 0.045 0.033 0.032 -0.187 -0.095 -0.139 -0.115 -0.161 -0.286 -0.540 -0.240 -0.134 85 0.372 0.064 0.203 0.109 0.076 0.112 0.226 0.172 0.293 1999-2000 0.013 0.011 2000-2001 -0.001 0.051 2001-2002 -0.024 0.061 2002-2003 0.006 0.064 2003-2004 -0.007 0.067 2004-2005 -0.001 0.063 2005-2006 -0.007 0.083 Whole period -0.003 0.045 SWEDEN 1995-1996 0.020 0.257 1996-1997 0.005 0.214 1997-1998 0.025 0.385 1998-1999 -0.007 0.243 1999-2000 0.074 0.360 2000-2001 -0.006 0.220 2001-2002 0.025 0.243 2002-2003 0.049 0.310 2003-2004 -0.007 0.239 2004-2005 0.019 0.195 2005-2006 0.000 0.244 Whole period 0.019 0.273 ALL COUNTRIES 1990-1991 0.003 0.026 1991-1992 -0.006 0.027 1992-1993 0.000 0.026 1993-1994 0.001 0.024 1994-1995 0.004 0.025 1995-1996 0.009 0.027 1996-1997 -0.007 0.022 1997-1998 -0.013 0.027 1998-1999 -0.006 0.031 1999-2000 0.007 0.031 2000-2001 0.007 0.032 2001-2002 0.002 0.032 2002-2003 0.003 0.026 2003-2004 0.001 0.028 2004-2005 0.000 0.033 2005-2006 0.002 0.030 Whole period Source: authors’ calculations -0.042 -0.338 -0.341 -0.268 -0.158 -0.374 -0.642 -0.642 0.103 0.172 0.391 0.439 0.694 0.284 0.811 0.811 2.173 -0.328 -0.289 0.137 -0.424 1.168 -0.016 0.171 0.551 0.091 0.111 0.204 0.075 0.309 0.143 0.685 -0.061 -0.756 -0.659 -0.601 -0.796 0.242 -0.495 -0.796 4.056 -0.035 0.627 1.981 -0.092 2.555 0.531 4.056 -0.563 -0.831 -0.674 -0.760 -0.638 -0.635 -0.747 -0.654 -0.532 -0.675 -0.386 -0.831 3.125 1.629 5.433 1.292 3.310 1.710 1.535 3.282 1.975 0.962 2.404 1.000 -0.194 0.058 -0.052 -0.024 0.106 0.120 0.201 0.116 0.165 -0.182 0.148 0.048 0.134 0.155 0.165 0.148 0.194 0.644 0.637 0.167 0.162 0.133 0.200 0.344 -0.544 -0.406 -0.472 -0.874 -0.746 -0.741 -0.763 -0.466 -0.420 -0.716 -0.384 -0.874 0.366 0.865 0.819 0.376 2.014 4.192 2.968 1.378 1.416 0.685 1.994 1.000 -0.183 -0.181 -0.099 -0.168 -0.115 -0.287 -0.122 -0.178 -0.194 -0.260 -0.195 -0.191 -0.198 -0.242 -0.224 -0.120 - 86 0.116 0.187 0.196 0.157 0.163 0.109 0.102 0.152 0.121 0.228 0.276 0.216 0.166 0.178 0.223 0.190 - Annex 14 Technological change Crop farms (TF 1) Years Mean St. Dev. SFA Min Max BELGIUM 1990-1991 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 Whole period ESTONIA 2004-2005 2005-2006 Whole period FRANCE 1990-1991 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 Whole period GERMANY 1990-1991 1991-1992 87 Mean St. Dev. DEA Min Max 0.969 0.980 1.080 1.252 0.836 0.867 1.091 1.275 0.695 1.147 0.917 0.945 0.875 0.090 0.064 0.155 0.138 0.141 0.122 0.097 0.134 0.097 0.162 0.124 0.099 0.448 0.456 0.703 0.782 0.681 0.711 0.571 0.756 0.736 0.563 0.903 0.545 0.754 0.619 1.214 1.178 2.223 1.471 1.880 1.400 1.607 1.624 1.096 1.666 1.491 1.534 5.096 0.403 1.224 1.023 0.152 0.207 0.237 0.000 0.737 0.000 1.244 1.647 5.096 1.064 0.909 0.994 0.166 0.076 0.153 0.820 0.441 0.441 1.811 1.096 1.811 1.090 0.845 0.996 1.254 0.849 1.116 0.862 1.087 0.950 0.983 0.971 0.994 0.952 0.949 0.976 1.306 1.003 0.355 0.196 0.207 0.125 0.140 0.115 0.175 0.085 0.098 0.071 0.043 0.076 0.070 0.099 0.094 0.323 0.257 0.861 0.418 0.788 0.727 0.661 0.802 0.702 0.696 0.669 0.465 0.777 0.696 0.715 0.702 0.875 0.749 0.418 8.677 4.305 22.963 1.778 3.824 3.120 7.053 1.800 1.728 1.422 1.406 1.725 1.641 1.775 1.963 7.086 22.963 1.210 0.946 0.095 0.104 0.979 0.641 2.304 1.410 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 Whole period HUNGARY 2004-2005 2005-2006 Whole period ITALY 1990-1991 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 Whole period THE NETHERLANDS 1990-1991 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 88 0.954 0.986 1.107 1.185 0.900 0.916 0.895 0.560 1.051 0.914 1.055 1.080 0.922 1.396 1.020 0.056 0.103 0.117 0.062 0.082 0.094 0.096 0.140 0.089 0.100 0.183 0.103 0.086 0.323 0.221 0.788 0.800 0.885 0.802 0.770 0.605 0.737 0.322 0.754 0.720 0.636 0.679 0.564 0.756 0.229 1.499 2.883 2.049 1.364 1.654 1.342 1.670 1.243 2.744 1.930 1.793 1.904 1.914 2.587 4.950 0.955 1.221 1.077 0.108 0.114 0.172 0.648 0.764 0.648 1.524 1.637 1.637 0.947 0.844 0.921 0.815 1.175 0.552 0.789 0.723 1.003 0.922 0.797 0.949 0.973 0.799 1.543 0.516 0.858 0.156 0.088 0.115 0.141 0.152 0.184 0.186 0.114 0.097 0.094 0.111 0.186 0.111 0.201 0.317 0.163 0.271 0.043 0.417 0.166 0.578 0.460 0.335 0.259 0.494 0.712 0.657 0.387 0.576 0.525 0.510 0.360 0.253 0.043 1.311 1.242 1.337 2.082 1.501 1.941 1.742 1.443 2.040 2.455 1.481 2.741 1.375 2.547 2.407 1.985 2.741 0.734 0.976 1.048 1.284 0.805 0.852 1.457 0.852 0.791 1.000 0.393 0.084 0.108 0.095 0.082 0.070 0.170 0.104 0.062 0.040 0.000 0.743 0.593 0.959 0.662 0.684 0.794 0.710 0.698 0.905 1.451 1.325 1.630 1.726 1.225 1.095 1.799 1.165 1.002 1.115 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 Whole period SWEDEN 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 Whole period ALL COUNTRIES … … Whole period Source: authors’ calculations 89 2.280 0.597 1.059 0.781 1.162 1.121 0.988 0.291 0.081 0.098 0.087 0.092 0.108 0.108 1.354 0.420 0.874 0.655 0.988 0.688 0.000 2.891 0.935 1.608 1.155 1.436 1.265 2.891 0.924 1.138 0.854 1.206 0.929 1.021 1.009 1.037 0.926 0.953 1.034 0.908 0.103 0.141 0.077 0.699 0.119 0.062 0.059 0.050 0.083 0.043 0.087 0.367 0.790 0.717 0.649 0.966 0.139 0.913 0.795 0.801 0.734 0.770 0.845 0.139 1.560 1.401 1.053 8.652 1.012 1.249 1.254 1.123 1.164 1.055 1.248 1.000 Annex 15 Technological change Dairy farms (TF 41) Years Mean St. Dev. SFA Min Max BELGIUM 1990-1991 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 Whole period ESTONIA 2004-2005 2005-2006 Whole period FRANCE 1990-1991 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 Whole period GERMANY 1990-1991 1991-1992 90 Mean St. Dev. DEA Min Max 0.934 1.075 1.009 0.935 0.930 0.972 1.014 1.082 0.944 0.944 1.012 0.971 1.013 0.066 0.077 0.101 0.064 0.060 0.078 0.056 0.075 0.051 0.053 0.155 0.049 0.102 0.783 0.713 0.883 0.487 0.612 0.827 0.514 0.924 0.485 0.714 0.909 0.760 0.837 1.210 1.273 2.118 1.080 1.073 1.717 1.174 1.631 1.040 1.228 2.856 1.139 2.145 1.141 0.952 0.999 0.254 0.068 0.120 0.949 0.140 0.140 4.652 1.125 4.652 0.861 0.974 0.922 0.073 0.079 0.095 0.686 0.793 0.686 1.164 1.253 1.253 0.949 1.090 1.011 0.999 1.050 0.907 1.052 1.153 0.975 0.898 0.995 1.041 0.927 0.994 1.073 1.016 1.004 0.055 0.838 1.275 0.087 0.928 2.658 0.048 0.843 1.208 0.612 0.861 17.164 0.211 0.867 6.842 0.071 0.000 1.162 0.189 0.855 6.254 0.061 0.687 1.331 0.051 0.758 1.103 0.049 0.779 1.267 0.300 0.835 10.486 0.130 0.905 4.956 0.368 0.775 8.929 0.149 0.827 5.265 0.053 0.899 1.180 0.094 0.891 2.672 0.229 0.000 17.164 1.358 1.085 0.201 0.093 0.802 0.847 1.761 1.445 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 Whole period HUNGARY 2004-2005 2005-2006 Whole period ITALY 1990-1991 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 Whole period THE NETHERLANDS 1990-1991 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 91 0.921 1.261 0.846 1.405 0.802 1.200 1.092 1.209 0.924 0.968 0.946 0.848 1.068 0.876 1.057 0.043 0.173 0.154 0.277 0.089 0.078 0.107 0.105 0.048 0.040 0.094 0.174 0.151 0.130 0.235 0.721 0.865 0.517 0.779 0.611 0.872 0.803 0.860 0.724 0.693 0.712 0.545 0.269 0.606 0.269 1.179 2.244 1.543 1.896 1.064 1.447 1.559 1.480 1.243 1.095 1.439 5.710 1.556 1.204 5.710 1.022 1.003 1.012 0.061 0.123 0.098 0.945 0.617 0.617 1.298 1.249 1.298 0.962 1.098 1.072 1.114 0.886 1.138 1.078 0.899 0.974 1.031 1.114 1.135 1.021 1.093 0.987 0.980 1.034 0.088 0.086 0.106 0.082 0.086 0.105 0.124 0.054 0.058 0.130 0.124 0.108 0.149 0.130 0.106 0.079 0.130 0.667 0.828 0.646 0.627 0.733 0.689 0.763 0.719 0.737 0.641 0.470 0.355 0.565 0.764 0.681 0.731 0.355 1.356 1.465 1.337 1.389 1.308 1.570 1.426 1.443 1.222 1.638 1.642 1.458 1.852 1.608 1.726 1.238 1.852 0.994 1.032 0.983 1.036 0.945 0.921 1.086 1.025 0.918 0.877 0.029 0.042 0.035 0.036 0.035 0.079 0.083 0.107 0.092 0.116 0.892 0.919 0.824 0.895 0.854 0.745 0.903 0.800 0.745 0.379 1.134 1.193 1.067 1.157 1.136 1.109 1.285 1.247 1.387 1.043 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 Whole period SWEDEN 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 Whole period ALL COUNTRIES … … Whole period Source: authors’ calculations 92 1.023 1.069 0.972 0.882 1.155 0.914 0.931 0.077 0.092 0.091 0.068 0.123 0.080 0.253 0.926 0.619 0.742 0.759 0.881 0.752 0.379 1.717 1.294 1.238 1.300 1.404 1.090 1.717 0.920 1.085 0.956 0.976 1.002 0.965 0.978 1.018 1.026 0.904 0.979 0.891 0.105 0.098 0.126 0.076 0.091 0.048 0.043 0.049 0.044 0.043 0.045 0.297 0.711 0.738 0.794 0.861 0.087 0.683 0.887 0.862 0.851 0.823 0.748 0.087 1.373 1.572 1.573 1.437 1.108 1.086 1.318 1.360 1.115 1.012 1.137 1.000 Annex 16 Productivity change Crop farms (TF 1) Years Mean SFA St. Dev. Min Max BELGIUM 1990-1991 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 Mean DEA St. Dev. Min 0.973 0.979 1.023 1.059 0.927 0.976 1.024 1.032 0.889 1.024 0.992 0.930 1.167 0.188 0.153 0.308 0.218 0.216 0.240 0.267 0.312 0.272 0.243 0.234 0.216 0.747 0.381 0.468 0.606 0.391 0.507 0.431 0.514 0.338 0.361 0.564 0.412 0.526 0.577 1.874 1.345 2.975 1.738 1.880 2.285 2.886 2.045 1.904 2.054 2.108 1.737 8.257 0.348 3.424 1.034 0.283 0.000 0.271 0.677 0.324 0.000 2.233 1.946 8.257 1.076 0.842 1.017 0.433 0.183 0.297 0.216 0.392 0.183 3.220 2.134 3.220 1.038 0.895 0.872 0.992 0.985 1.030 0.993 0.987 0.957 0.999 0.936 1.008 0.993 1.002 0.953 1.089 0.982 0.743 0.265 0.117 0.233 0.315 0.265 0.379 0.184 0.179 0.268 0.172 0.307 0.220 0.238 0.201 0.590 0.425 0.398 0.181 0.357 0.307 0.322 0.461 0.311 0.486 0.080 0.329 0.253 0.369 0.253 0.427 0.141 0.229 0.080 19.031 5.142 40.490 4.530 8.765 5.920 13.368 2.703 2.868 8.677 2.029 9.860 3.528 4.539 4.547 15.071 40.490 1.032 0.961 0.901 1.000 0.336 0.199 0.464 0.289 0.524 0.371 0.040 0.253 7.486 1.965 4.506 5.797 Max 2003-2004 2004-2005 2005-2006 Whole period ESTONIA 2004-2005 2005-2006 Whole period FRANCE 1990-1991 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 Whole period GERMANY 1990-1991 1991-1992 1992-1993 1993-1994 93 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 Whole period HUNGARY 2004-2005 2005-2006 Whole period ITALY 1990-1991 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 Whole period THE NETHERLANDS 1990-1991 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 94 0.930 1.027 1.007 0.960 1.045 0.975 1.033 0.893 1.054 1.051 0.968 1.033 1.030 0.289 0.342 0.226 0.245 0.264 0.195 0.222 0.230 0.410 0.631 0.221 0.254 0.331 0.464 4.186 0.422 7.228 0.041 2.601 0.084 2.998 0.375 2.740 0.269 2.291 0.452 2.910 0.245 2.570 0.041 8.216 0.206 18.093 0.338 2.945 0.278 4.335 0.040 18.093 0.873 1.023 0.943 0.343 0.576 0.479 0.025 0.069 0.025 4.610 13.454 13.454 1.043 0.911 0.911 0.913 0.974 0.959 0.996 0.962 1.022 0.984 1.022 0.999 1.013 0.991 1.046 0.985 0.980 0.856 0.266 0.331 0.375 0.359 0.423 0.523 0.635 0.583 0.359 0.686 0.496 4.554 0.991 0.656 0.508 0.770 0.016 0.151 0.086 0.122 0.041 0.114 0.021 0.187 0.115 0.032 0.130 0.093 0.283 0.124 0.085 0.067 0.016 19.544 3.621 4.775 8.264 4.879 7.120 13.180 24.952 23.972 4.079 27.413 10.497 89.436 37.845 11.888 9.281 89.436 0.734 0.768 0.958 1.021 0.720 0.726 0.873 0.899 0.709 1.000 0.623 0.774 0.393 0.400 0.425 0.522 0.408 0.405 0.501 0.437 0.354 0.064 0.686 0.345 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.832 0.000 0.000 1.000 3.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 1.000 4.000 2.000 2002-2003 2003-2004 2004-2005 2005-2006 Whole period SWEDEN 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 Whole period ALL COUNTRIES … … Whole period Source: authors’ calculations 95 0.953 0.704 0.860 0.959 0.829 0.518 0.404 0.554 0.440 0.461 0.000 0.000 0.000 0.000 0.000 4.000 2.000 2.000 3.000 4.000 1.274 0.798 0.602 1.335 0.952 0.937 0.837 0.945 0.868 0.824 0.812 0.908 1.586 0.430 0.480 1.884 0.600 0.436 0.694 0.492 0.389 0.488 0.487 0.821 0.000 20.412 0.000 1.640 0.000 1.876 0.000 22.590 0.000 5.845 0.000 2.861 0.000 8.864 0.000 3.733 0.000 2.269 0.000 3.985 0.000 1.996 0.000 22.590 Annex 17 Productivity change Dairy farms (TF 41) Years Mean SFA St. Dev. Min Max BELGIUM 1990-1991 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 Mean DEA St. Dev. Min 0.959 1.062 1.035 0.966 0.919 0.948 1.040 1.024 0.960 0.988 1.005 0.933 1.035 0.179 0.225 0.190 0.159 0.176 0.206 0.154 0.129 0.118 0.141 0.206 0.139 0.197 0.424 0.536 0.602 0.355 0.029 0.559 0.416 0.702 0.485 0.557 0.329 0.343 0.644 1.821 2.638 2.696 1.694 1.519 2.568 1.545 1.631 1.269 1.668 2.856 1.564 2.617 0.986 0.968 1.003 0.357 0.598 0.170 0.127 0.193 0.029 5.487 1.940 5.487 0.956 0.940 0.965 0.189 0.530 0.177 0.594 0.183 0.530 1.776 1.582 1.776 0.957 1.035 0.994 1.011 0.977 0.945 0.998 1.028 0.981 1.002 0.982 0.990 0.964 0.981 1.009 0.957 0.988 0.284 0.216 0.158 0.837 0.291 0.170 0.228 0.138 0.134 0.150 0.552 0.245 1.075 0.236 0.135 0.189 0.416 0.220 0.220 0.340 0.525 0.201 0.000 0.533 0.611 0.361 0.097 0.335 0.031 0.327 0.515 0.290 0.395 0.000 8.845 4.635 2.831 24.236 7.924 4.220 6.254 2.365 1.761 2.329 15.182 7.006 28.963 7.017 1.837 3.607 28.963 0,952 1,032 0,949 0,971 0,148 0,149 0,132 0,161 0,310 0,448 0,358 0,297 2,727 2,008 1,577 2,593 Max 2003-2004 2004-2005 2005-2006 Whole period ESTONIA 2004-2005 2005-2006 Whole period FRANCE 1990-1991 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 Whole period GERMANY 1990-1991 1991-1992 1992-1993 1993-1994 96 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 Whole period HUNGARY 2004-2005 2005-2006 Whole period ITALY 1990-1991 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 Whole period THE NETHERLANDS 1990-1991 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 97 0,890 0,942 1,040 1,032 0,994 1,023 0,970 0,949 0,962 1,009 1,022 0,972 1,009 0,191 0,176 0,178 0,191 0,184 0,171 0,147 0,144 0,454 0,491 0,365 0,145 0,258 0,280 2,201 0,389 2,534 0,446 3,375 0,123 3,116 0,338 2,592 0,453 2,323 0,476 2,111 0,559 1,813 0,256 6,283 0,107 12,653 0,199 3,096 0,231 2,531 0,107 12,653 1.019 1.020 1.020 0.281 0.251 0.264 0.565 0.576 0.565 2.162 1.911 2.162 0.982 0.986 0.992 0.970 0.992 0.996 0.976 0.961 0.995 1.029 1.064 0.973 0.984 0.994 1.000 0.996 0.993 0.527 0.236 0.227 0.269 0.719 1.030 0.243 0.284 0.233 0.273 0.654 0.231 0.301 0.280 0.270 0.231 0.445 0.431 0.244 0.282 0.028 0.024 0.236 0.241 0.300 0.238 0.355 0.177 0.187 0.187 0.264 0.362 0.361 0.024 19.322 3.359 2.846 3.555 26.182 30.801 3.583 5.933 3.268 3.775 6.868 2.912 3.427 2.881 4.832 2.544 30.801 0.800 0.855 0.771 0.778 0.799 0.726 0.919 0.842 0.830 0.888 0.504 0.856 0.401 0.394 0.412 0.408 0.345 0.388 0.407 0.331 0.333 0.148 0.519 0.293 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.000 1.000 1.000 1.000 1.000 1.000 2.000 1.000 1.000 1.000 2.000 2.000 2002-2003 2003-2004 2004-2005 2005-2006 Whole period SWEDEN 1995-1996 1996-1997 1997-1998 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003 2003-2004 2004-2005 2005-2006 Whole period ALL COUNTRIES … … Whole period Source: authors’ calculations 98 0.939 0.822 0.901 0.912 0.818 0.267 0.378 0.332 0.294 0.379 0.000 0.000 0.000 0.000 0.000 2.000 2.000 2.000 2.000 2.000 0.982 0.767 0.817 0.866 0.967 0.847 0.940 0.927 0.821 0.905 0.858 0.883 0.339 0.418 0.602 0.361 0.341 0.330 0.339 0.338 0.346 0.348 0.330 0.384 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3.000 2.000 8.000 2.000 3.000 2.000 3.000 2.000 1.000 2.000 2.000 8.000 Farm Accountancy Cost Estimation and Policy Analysis of European Agriculture www.ekon.slu.se/facepa 99
© Copyright 2026 Paperzz