Continuous Time Convolution

EE3054
Signals and Systems
Continuous Time
Convolution
Yao Wang
Polytechnic University
Some slides included are extracted from lecture presentations prepared by
McClellan and Schafer
License Info for SPFirst Slides
This work released under a Creative Commons License
with the following terms:
Attribution
The licensor permits others to copy, distribute, display, and perform
the work. In return, licensees must give the original authors credit.
Non-Commercial
The licensor permits others to copy, distribute, display, and perform
the work. In return, licensees may not use the work for commercial
purposes—unless they get the licensor's permission.
Share Alike
The licensor permits others to distribute derivative works only under
a license identical to the one that governs the licensor's work.
Full Text of the License
This (hidden) page should be kept with the presentation
3/14/2008
© 2003, JH McClellan & RW Schafer
2
LECTURE OBJECTIVES
Review of C-T LTI systems
Evaluating convolutions
Examples
Impulses
LTI Systems
Stability and causality
Cascade and parallel connections
3/14/2008
© 2003, JH McClellan & RW Schafer
3
Linear and Time-Invariant
(LTI) Systems
If a continuous-time system is both linear and
time-invariant, then the output y(t) is related to
the input x(t) by a convolution integral
y (t ) =
∞
∫ x(τ )h(t − τ )dτ = x(t ) ∗ h(t )
−∞
where h(t) is the impulse response of the system.
3/14/2008
© 2003, JH McClellan & RW Schafer
4
Evaluating a Convolution
x (t ) = u(t − 1)
y (t ) =
h (t ) = e − t u (t )
∞
h
(
τ
)
x
(
t
−
τ
)
d
τ
=
h
(
t
)
∗
x
(
t
)
∫
−∞
3/14/2008
© 2003, JH McClellan & RW Schafer
5
“Flipping and Shifting”
x (τ )
“flipping”
g(τ ) = x(−τ ) = u(− τ −1)
“flipping and shifting”
g(τ − t) = x(−(τ − t)) = x(t − τ )
3/14/2008
t −1
© 2003, JH McClellan & RW Schafer
t
6
Evaluating the Integral
3/14/2008
 0
t −1
y (t ) =  −τ
e dτ
∫

0
© 2003, JH McClellan & RW Schafer
t −1 < 0
t −1 > 0
7
Solution
y (t ) =
=
y (t ) = 0
3/14/2008
t −1
∫e
0
−τ
1− e
dτ = − e
−τ t −1
−( t −1)
0
t ≥1
t<1
© 2003, JH McClellan & RW Schafer
8
Convolution GUI
3/14/2008
© 2003, JH McClellan & RW Schafer
9
Another Example
x (t ) = e − at u(t )
y (t ) =
h(t ) = e − bt u (t ), b ≠ a
∞
∫ x(τ )h(t − τ )dτ = x(t ) ∗ h(t )
−∞
t

∞
−bt
− aτ bτ
e
e
e dτ

−aτ
−b ( t −τ )
∫
u ( t − τ ) dτ = 
= ∫ e u(τ )e
0

−∞
0

 e −at − e −bt
e −at − e −bt
t>0

u (t )
=
=  −a+b
b−a

0
t<0

3/14/2008
© 2003, JH McClellan & RW Schafer
t>0
t<0
10
Special Case: u(t)
x (t ) = e − at u(t ), a ≠ 0
y (t ) =
h (t ) = u (t )
∞
∫ x(τ )h(t − τ )dτ = x(t ) ∗ h(t )
−∞
=
1
− at
(1 − e )u(t )
a
if a = 2
1
−2 t
y (t ) = (1 − e )u(t )
2
3/14/2008
© 2003, JH McClellan & RW Schafer
11
Convolve Unit Steps
x (t ) = u (t )
y (t ) =
h (t ) = u (t )
∞
∫ x(τ )h(t − τ )dτ = x(t ) ∗ h(t )
−∞
t

∞
 ∫ 1 dτ t > 0
= ∫ u (τ )u(t − τ )dτ = 
0
 0
−∞
t<0

 t t > 0
=
= t u (t )
Unit Ramp
0 t < 0
3/14/2008
© 2003, JH McClellan & RW Schafer
12
“Flipping and Shifting”
x(τ )
“flipping”
“flipping and shifting”
3/14/2008
g(τ ) = x(−τ ) = u(− τ −1)
g(τ − t) = x( −(τ − t)) = x(t − τ )
t −1
© 2003, JH McClellan & RW Schafer
t
13
More examples
Rectangular pulses
Another Convolution Example
−t
h(t) = e u(t)
∞
y(t) = ∫ x(τ )h(t − τ )dτ = x(t) ∗ h(t)
−∞
3/14/2008
© 2003, JH McClellan & RW Schafer
15
Evaluating the Integral
y(t) =
t
= ∫e
1
=
3/14/2008
t <1
0
−(t−τ )
2
∫e
1
dτ
−(t−τ )
dτ
1≤ t ≤ 2
2≤t
© 2003, JH McClellan & RW Schafer
16
Solution
t
y(t) =
∫e
2
−(t−τ )
1
= ∫e
−(t−τ )
1
y(t) = 0
3/14/2008
dτ
dτ
−(t−τ ) t
=e
1
−(t−τ ) 2
=e
1
=1- e
−(t−1)
1≤ t ≤ 2
= e−(t−2) - e−(t−1) 2 ≤ t
t <1
© 2003, JH McClellan & RW Schafer
17
Convolution GUI
3/14/2008
© 2003, JH McClellan & RW Schafer
18
Convolution with Impulses, etc.
Convolution with impulses
x(t ) * δ (t − t1 ) = x(t − t1 )
Convolution with step function = integrator
3/14/2008
© 2003, JH McClellan & RW Schafer
19
Convolution is Commutative
h(t ) ∗ x(t ) =
∞
h
x
t
d
(
)
(
)
τ
−
τ
τ
∫
−∞
let σ = t − τ and dσ = −dτ
−∞
h(t ) ∗ x(t ) = − ∫ h(t − σ ) x(σ )dσ
=
∞
∞
∫ h(t − σ ) x(σ )dσ = x(t ) ∗ h(t )
−∞
3/14/2008
© 2003, JH McClellan & RW Schafer
20
Stability
A system is stable if every bounded input
produces a bounded output.
A continuous-time LTI system is stable if
and only if
∞
∫ h(t) dt < ∞
−∞
3/14/2008
© 2003, JH McClellan & RW Schafer
21
Integrator is unstable
Causal Systems
A system is causal if and only if y(t0)
depends only on x(τ) for τ< t0 .
An LTI system is causal if and only if
h(t ) = 0 for t < 0
3/14/2008
© 2003, JH McClellan & RW Schafer
23
Convolution is Linear
Substitute x(t)=ax1(t)+bx2(t)
∞
y (t ) = ∫ [ax1 (τ ) + bx2 (τ )]h(t − τ )dτ
−∞
∞
∞
−∞
−∞
= a ∫ x1 (τ )h(t − τ )dτ + b ∫ x2 (τ )h(t − τ )dτ
= ay1 (t ) + by2 (t )
Therefore, convolution is linear.
3/14/2008
© 2003, JH McClellan & RW Schafer
24
Convolution is Time-Invariant
Substitute x(t-t0)
∞
w(t) =
∫ h(τ )x((t − τ ) − t )dτ
o
−∞
∞
=
∫ h(τ )x((t − t
o
) − τ )dτ
−∞
= y(t − to )
3/14/2008
© 2003, JH McClellan & RW Schafer
25
Cascade of LTI Systems
δ (t)
h1 (t)
h1 (t) ∗ h2 (t)
h(t) = h1 (t) ∗ h2 (t) = h2 (t) ∗ h1(t)
δ (t)
3/14/2008
h2 (t)
© 2003, JH McClellan & RW Schafer
h2 (t) ∗ h1(t)
26
Parallel LTI Systems
h1 (t)
δ (t)
h1 (t) + h2 (t)
h2 (t)
h(t) = h1 (t) + h2 (t)(t
3/14/2008
© 2003, JH McClellan & RW Schafer
27
Example: More complicated
combinations
READING ASSIGNMENTS
This Lecture:
Chapter 9, Sects. 9-6, 9-7, and 9-8
Other Reading:
Ch. 9, all
Next Lecture: Start reading Chapter 10