Chapter 5 Root Locus 1 In previous lecture Chapter 4 Routh Hurwitz Criterion Steady-state error analysis 2 Today’s plan Construction of Root Locus 3 Learning Outcomes At the end of this lecture, students should be able to: Sketch the root locus for a given system Identify the stability of a system using root-locus analysis 4 Introduction Root Locus illustrates how the poles of the closed-loop system vary with the closed-loop gain. Graphically, the locus is the set of paths in the complex plane traced by the closed-loop poles as the root locus gain is varied from zero to infinity. 5 R(s) + - K C(s) Gc H block diagram of the closed loop system given a forward-loop transfer function; KGc(s)H(s) where K is the root locus gain, and the corresponding closed-loop transfer function KGc ( s) G( s) 1 KGc ( s) H ( s) the root locus is the set of paths traced by the roots of 1 + KGc(s)H(s) =0 as K varies from zero to infinity. As K changes, the solution to this equation changes. 6 So basically, the root locus is sketch based on the characteristic equation of a given transfer function. Let say: KGc ( s) H ( s ) G ( s) 1 KGc ( s) H ( s ) Thus, the characteristic equation : C.E 1 KGc (s) H ( s) 7 Root locus starts from the characteristic equation. 1 KGc ( s) H ( s) 0 Split into 2 equations: KGc (s) H (s) 1 j 0 Magnitude condition | KGc ( s) H ( s) || 1 | Angle condition KGc ( s ) H ( s ) 180 o (1 2m) where m 0,1,2, 8 Remarks If Si is a root of the characteristic equation, then 1+G(s)H(s) = 0 OR Both the magnitude and Angle conditions must be satisfied If not satisfied Not part of root locus 9 Example 1 K G( s) s( s 2) k k k s ( s 2) 2 k s ( s 2) k s 2 s k 1 s ( s 2) s1, 2 2 4 4k 1 1 k 2 -2 -1 (ln P.O) 2 2 (ln P.O) 2 cos1 0 10 S1 1 j1 Let say my first search point, S1 S1 1 2 0 -1 -2 (A) Satisfy the angle condition FIRST G(s) |s 1 j1 1 2 135o 45o 180o (B) Magnitude condition to find K K 1 ( 1 j1)( 1 j1 2) K ( 2 )( 2) 2 11 Let say the next search point s2 2 j1 -2 -1 0 Check whether satisfy angle condition G ( s ) |s 2 j1 K K (2 j1)( 2 j1 2) (2 j1)( j1) G(s) |s 2 j1 [180o tan 1 (1 2) 90o 270o tan 1 (1 2) G(s) |s 2 j1 180o OR 180o Since angle condition was not satisfied not part of root locus 12 CONSTRUCTION RULES OF ROOT LOCUS 8 RULES TO FOLLOW 13 Construction Rules of Root Locus KG ( s ) H ( s ) 1 M Assume KG( s ) H ( s ) K ( s zi ) i 1 N (s p j ) j 1 M Then KG( s ) H ( s ) K ( s zi ) i 1 N (s p j ) 1 j 1 14 Thus (s p j ) K ( s zi ) 15 Rule 1 : When K = 0 s pj Root at open loop poles (a) The R-L starts from open loop poles (b) The number of segments is equal to the number of open loop poles 16 Rule 2: When K = ∞ s zi (a) The R-L terminates (end) at the open loop zeros 17 Rule 3: Real-axis segments On the real axis, for K > 0 the root locus exists to the left of an odd number of real-axis, finite open-loop poles and/or finite open-loop zeros Example 2 K ( s 3)( s 4) G( s) ( S 1)( S 2) R-L doesn’t exist here R-L exist here R-L exist here 18 Rule 4: Angle of asymptote 180 (1 2m) A , m 0,1,( N P N Z 1) NP NZ o NP = number of poles NZ = number of zeros 19 Example 3 K G( s) s ( s 1)( s 2) A1 A2 180o (1 2(0)) 60o 30 180o (1 2(1)) 180o 30 NP=3 NZ=0 m 0,1,2 A2 A1 A3 Centroid A3 180o (1 2(2)) 300o 60o 30 20 Rule 5: Centroid A Re( p ) Re( z ) j i NP NZ From example 3 K G( s) s ( s 1)( s 2) Recall s Re j Im Thus, s 0,1,2 1 2 A 1 3 -1 21 Rule 6: Break away & break in points -2 -1 Break away point 0 -2 -1 0 Break in point How to find these points ? 22 KG ( s ) H ( s ) 1 1 K G( s) H ( s) Differentiate K with respect to S & equate to zero dK d 1 d G ( s) H ( s) 0 ds ds G ( s) H ( s) ds How ? Solve for S this value will either be the break away or break in point 23 Let say N1 N 2 G( s) H (s) D1 D2 d D1 D2 ( N1 N 2 )' N1 N 2 ( D1 D2 )' G ( s) H ( s) 0 2 ds ( D1 D2 ) Thus, D1D2 ( N1N2 )'N1N2 (D1D2 )' 0 24 Now, find dK d 1 d D1D2 ds ds G(s) H (s) ds N1 N 2 dK N1 N 2 ( D1 D2 )' D1 D2 ( N1 N 2 )' 0 ds N1 N 2 D1D2 ( N1 N2 )' N1 N2 ( D1D2 )' 0 Thus, So, notice that dK d 1 d G ( s) H ( s) ds ds G ( s) H ( s) ds 25 Example 4 1 G( s) s ( s 2) Solution: dK d d 1 G ( s) 0 ds ds ds s( s 2) (2s 2) 0 2 ( s ( s 2)) s 1 -2 0 -1 26 Example 5 1 G( s) s ( s 1)( s 2) -2 -1 0 NP = 3 NZ = 0 27 180 (1 2m) A , m 0,1,( N P N Z 1) NP NZ o A 60o ,180o ,60o A Re( p j ) Re( zi ) NP NZ 1 2 1 3 -2 -1 0 28 dK d 1 ds ds s 3 2 s 2 2 s 1(3s 2 6s 2) 3 0 2 2 ( s 3s 2s) (3s 2 6s 2) 0 6 36 4(3)( 2) s1 , s2 2(3) Break away point s1 , s2 1.6,0.42 Invalid, why ??? 29 1 G( s) s ( s 1)( s 2) -2 -1 -0.42 0 How to determine these values ? 30 From characteristic equation 1 KG( s ) 0 1 1 K 0 s ( s 1)( s 2) s 3s 2 s K 0 3 2 Construct the Routh array 31 S3 1 2 S2 3 K S1 6-K/3 S0 K Force S1 row to zero or K=6 Replace K=6 into S2 row 3s 6 0 2 s 2 s j 2 2 Since s j j j 2 2 32 -2 -1 -0.42 2 0 2 33 Rule 7 : Angle of departure (arrival) Finding angles of departure and arrival from complex poles & zero Root locus start from open loop poles Angle of departure p Root locus terminates at open loop zeros Angle of departure z 34 Angle of Departure 1 2 3 4 5 6 (2k 1)180o 35 To make it easier to remember: Let’s change: p 1 Angles due to poles, keep using symbol θ 4 4 5 5 Angles due to zeros, change to symbol β 2 3 6 2 3 6 Replace in this equation 1 2 3 4 5 6 (2k 1)180o and let k=0, we get p 2 3 4 5 6 180o Since Φp= Φp+360o p 2 3 4 5 6 180o Re-arrange p 180o 2 3 6 4 5 Thus, the angle of departure: p 180o zi p j 36 Angle of Arrival 2 1 3 4 5 6 (2k 1)180o 37 To make it easier to remember: Let’s change: z 2 Angles due to poles, keep using symbol θ 1 1 4 4 5 5 Replace in this equation 2 1 3 4 5 6 (2k 1)180o and let k=0, we get z 1 3 4 5 6 180o Re-arrange z 180o 1 4 5 3 6 Thus, the angle of arrival: Angles due to zeros, change to symbol β 3 6 3 6 z 180o p j zi 38 Angle of Departure Angle of Arrival p 180o zi p j z 180o p j zi 39 Example 6 K G( s) s( s 2 6s 25) Step 1: Determine poles & zeros poles at : 0, 6 36 100 0,3 j 4 2 Np=3 Nz=0 Step 2: Maps poles & zeros on the s-plane 4 -3 0 -4 40 Step 3: Calculate angle of asymptote 180o (1 2m) A , m 0,1, (3 0 1) 0,1,2 NP NZ A1 180o (1 2(0)) 60o 30 A2 180o (1 2(1)) 180o 30 A3 180o (1 2(2)) 300o 60o 30 41 Step 4: Determine centroid poles: 0,3 j 4 A Re( p j ) Re( zi ) NP NZ 33 A 2 30 Step 5: Sketch asymptotes line with dotted line 4 -3 -2 0 -4 42 Step 6: Determine the break-away or break in points dK d 1 d 2 s ( s 6s 25) 0 ds ds G( s) ds [3s 2 12s 25] 0 12 144 300 12 156 s1 , s2 6 6 Complex numbers NO break away or break in points only exist on real-axis of s-plane 43 Step 7: Since complex poles exist, calculate the angle of departure p |s 3 j 4 180o zi p j 4 -3 0 p 180 90 o o due to s=0 due to its complex conjugate -4 How to determine θ? 44 180 o To determine θ 4 4 tan ( ) 3 1 -3 0 Thus: -4 4 180 tan 126.87 o 3 1 o p 126.87 90 180 Angle of departure : p 180 126.87 90 36.87 o o o -36.87o Cross Hair 45 Step 8: Determine jω-crossing see RULE 8 : After this Step 9: Sketch the root locus -36.87o 4 Rule 8 -3 -2 36.87o 0 -4 46 Rule 8 : R-L crosses jω-axis K G( s) s( s 2 6s 25) From Characteristic equation: 1 G( s) 0 1 s( s 2 K 0 6 s 25) s 3 6 s 2 25s K 0 47 Construct the Routh array s3 1 25 s2 6 K s1 (6(25)-K)/6= (150-K)/6 s0 K 48 Force row s1 to be zero, thus 150-K=0; K = 150 Substitute K = 150 into row s2 6 s 2 150 0 s 25 2 s 25 j 5 Since s = jω j j 5 Thus 5 49 Final Sketch -36.87o -3 -2 36.87o 5 4 0 10 points -4 -5 50 Try it Sketch the root locus for: K ( s 2s 2) G( s) s( s 1)( s 2) 2 51 52 How to use Matlab to sketch root locus K ( s 3)( s 4) K [ s 2 7 s 12] KG( s) ( s 1)( s 2) s 2 3s 2 In Matlab: num = [1 7 12] den = [1 3 2] rlocus(num,den) 53 Figure 8:10 page 438 54 Any Q’s ??? 55
© Copyright 2026 Paperzz