Chapter 9 The Laplace Transform 2. The Final

Signals and Systems
Lecture 26
•Properties of Laplace Transform
•Analysis LTI System using LT
•System Function
1
Chapter 9
The Laplace Transform
§9.5.9 Integration in the Time Domain
L
xt 

X s 

t

1
x d  X s 
s
L
Roc  R
Roc  R  Res  0
ROC的变化:
① R与 Res  0 无公共部分,积分的拉氏变换不存在。
xt   e t u t 
1
X s  
Res  1
s 1
xt  的积分不存在拉氏变换
j

0
1
2
Chapter 9
The Laplace Transform
② R与 Res  0 部分重叠。
L
xt   e 2t u t  


t

j
1
Res  2
s- 2

0
1
L
x d 

0  Res  2
ss- 2
③ R与 Res  0 部分重叠。
X s  

t

s
s  1s  2
Res  1
2
j
 2 1
0

1
x d 

Res  1
s  1s  2
L
3
Chapter 9
The Laplace Transform
§9.5.10 The Initial- and Final-Value Theorems
初值定理和终值定理
1. The Initial-Value Theorem
xt   0 , t  0 Contains no impulses or higher order
singularities at the origin.
 
x 0  lim sX s 
s
X s  为真分式
s 2  2s  1
X s  
s  1s  2s  3


2
s
s
 2s  1

1
x0   lim sX s   lim
s
s s  1s  2s  3
4
Chapter 9
The Laplace Transform
2. The Final-Value Theorem
xt   0 , t  0
X s 的极点均在jω轴左侧,允许在s=0有一个一阶极点
x   lim xt   lim sX s 
t 
1
X s  
sa
s 0
Res  a
xt   lim sX s   0
① a  0 tlim

s 0
1


lim
x
t

lim
s
1
② a  0 t 
s 0 s
③ a  0 终值不存在。
5
Chapter 9
The Laplace Transform
§9.5.11 运用基本性质求解拉氏变换
Example 1

x  t    a   t  kT 
k
k 0
1
X  s 
1  ae  sT
j
Determine X s 
1
Re s  ln a
T
1

ln a
T
Example 2
X  s 
1
s 1  e

x t  
k 0
s

Re s  0
Determine xt 
 1  u  t - k 
k
6
Chapter 9
The Laplace Transform
Example 3
X  s 
2
2
s
  1
2
Re  s  0
0
sin 0 tu  t  
 2
s  02
L
Determine xt 
Re s  0
x  t    sin t  t cos t  u  t 
7
Chapter 9
The Laplace Transform
§9.7 Analysis and Characterization of LTI Systems
Using the Laplace Transform
yt   xt  ht 
Y s   X s H s 
xt 
X s 
ht 
yt 
H s 
Y s 
H s  ——System Function or Transfer Function
8
Chapter 9
The Laplace Transform
§9.7.1 Causality
Causal
ROC  Res   max
For a system with a rational system function,
causal
ROC  Res   max
§9.7.2 Stability (稳定性)
stable
ROC  jω  axis
9
Chapter 9
The Laplace Transform
Example 9.20
j
s 1
H s  
s  1s  2
a  Res  2

1
j
Causal , unstable system
b -1  Res  2
2

1
2
noncausal , stable system
j
c Res  1
anticausal , unstable system
(反因果)
1

2
10
Chapter 9
The Laplace Transform
Stability of Causal System
如果 H s  为有理函数
系统因果、稳定
H s  的极点均在 j 轴左侧,
且 Res   max
Consider the following causal systems
a 
1
H s  
s 1
b
1
H s  
——unstable
s  1s  2
——Stable
11
Chapter 9
The Laplace Transform
Causal
ROC  Res   max
For a system with a rational system function,
causal
ROC  Res   max
stable
ROC  jω  axis
12
Chapter 9
The Laplace Transform
§9.7.3 LTI Systems Characterized by Linear Constant-Coefficient
Differential Equations
dy t 
 3 y t   xt 
dt
d k yt  M
d k xt 
ak
  bk

k
k
dt
dt
k 0
k 0
N
M
Y s 

H s  
X s 

k 0
N

k 0
bk s k
ak s k
ROC
13
Chapter 9
The Laplace Transform
Example Consider a causal LTI system whose input xt  and
output y  t  related through an linear constant-coefficient
differential equation of the form
y  t   3 y  t   2 y  t   x  t 
Determine the unit step response of the system.
 1  t 1 2t 
s t     e  e  ut 
2
2

14
Chapter 9
The Laplace Transform
R
Example 9.24
L
+
yt 
Consider a RLC
circuit in Figure 9.27
C
+
xt 
-
Figure 9.27
H s  
1 / LC
s 2  R / L s  1 / LC
15
Chapter 9
The Laplace Transform
Example 9.25
Consider an LTI system with input xt   e 3t ut  ,


Output yt   e t  e 2t u t .
(a) Determine the system function.
(b) Justify the properties of the system.
(c) Determine the differential equation of the system.
H  s 
s3
 s  1 s  2 
Re  s  -1
y  t   3 y  t   2 y  t   x  t   3 x  t 
16
Chapter 9
The Laplace Transform
Example Consider a causal LTI system ,
1
1. xt   e 2t -  t     y t   e 2t -  t   
6
dht 
b——unknown constant
2.
 2ht   e 4t u t   bu t 
dt
Determine the system function H s and b.
2
H  s 
s  s  4
Re  s  0
17
Chapter 9
The Laplace Transform
Example 9.26 An LTI system:
1. The system is causal.
2. H s  is rational and has only two poles: s= - 2 and s=4.
3. xt   1  yt   0
4. h0   4
Determine H s 
Example 9.26 An LTI system:
1. The system is causal.
2. H s  is rational and has only two poles: s=-2 and s=-4.
3. xt   1  yt   0
H s  
4. h0   4 Determine H s 
4s
s  2s  4
Res  4
18
Chapter 9
The Laplace Transform
Example 9.27
已知一因果稳定系统,H s 为有理函数,有一极点
在s=-2处,原点(s=0)处没有零点,其余零极点未知,
判断下列说法是否正确。
1.
2.
ht e3t 的傅立叶变换收敛。



ht dt  0
3. tht  为一因果稳定系统的单位冲激响应。
dh t 
4.
至少有一个极点。
dt
5. ht  为有限长度信号。
19
Chapter 9
6.
H s   H  s 
在s=-2处有极点
7.
The Laplace Transform
在s=+2处有极点
lim H s   2
s 
无法判断正确与否。
20
Chapter 9
例
The Laplace Transform
2t


y
t

e
ut  是系统函数为 H s  
设信号
的因果全通系统的输出。
s 1
s 1
1. 求出至少有两种可能的输入 f t  都能产生 yt  。
2. 若已知



f t  dt  
问输入 f t  是什么?
3. 如果已知存在某个稳定(但不一定因果)的系统,
它若以 yt  作输入,则输出为 f t  ,问这个输入
f t  是什么?系统的单位冲激响应是什么?
21
Chapter 9
The Laplace Transform
§9.8 System Function Algebra and Block Diagram Representations
(方框图)
yt   xt  ht 
Y s   X s H s 
xt 
X s 
ht 
yt 
H s 
Y s 
§9.8.1 System Functions for Interconnections of LTI Systems
1. Series interconnection
2. Parallel interconnection
3. Feedback interconnection
22
Chapter 9
The Laplace Transform
Example 9.28
Consider the causal LTI system H s   1
s3
X s  +
1/ s
Y s 
X s  +
-
+
3
1/ s
Y s 
3
Example 9.29
Consider the causal LTI system H s   s  2
s3
H s  
1
s  2
s3
23
Chapter 9
The Laplace Transform
Example 9.30
Consider the causal LTI system H s  
1
s 2  3s  2
(a) direct form
(b) cascade form
(c) parallel form
Example 9.31
2
2
s
 4s  6
Consider the causal LTI system H s  
s 2  3s  2
24
Chapter 9
The Laplace Transform
§9.8.3 系统的模拟
一 基本的模拟单元
1. 加法器
X 1 s 
X 2 s 
X 1 s 
1
X1 s   X 2 s 
1
X 2 s 
2. 标量乘法器
X s 
a
aX s 
X s 
3. 积分器
X s 
X1 s   X 2 s 
1/s
1
X s 
s
X s 
a
1
s
aX s 
1
X s 
s
25
Chapter 9
The Laplace Transform
二 方框图模拟
Example 9.29
Consider the causal LTI system H s   s  2
s3
yt   3 yt   xt   2xt 
yt   xt   2
t

wt 
xt 
x d  3
t

y d
wt 
yt 
1/ s
1/ s
2
S1
3
S2
26
Chapter 9
The Laplace Transform
交换S1和S2的连接顺序
输入相同
yt 
xt 
1/ s
3
系统等价为:
1/ s
2
输出相同
S2
S1
yt 
xt 
1/ s
3
2
27
Chapter 9
The Laplace Transform
三 信号流图模拟
两个基本约定:
1. 假定所有的环路均相互接触;
  1   Li
i
2. 假定每一前向通路与所有的环路相互接触;
k  1
H ov
1
  gk k
 k
g

1  L
k
k
i
i
28
Chapter 9
The Laplace Transform
Example 9.29
Consider the causal LTI system H s   s  2
s3
1 2 / s
H s  
L1
1 3 / s
1
X s 
1
公共点
1/s
2
Y s 
-3
yt 
xt 
1/ s
3
2
29
Chapter 9
The Laplace Transform
Example 9.31
2s 2  4s  6
Consider the causal LTI system H s   2
s  3s  2
2  4 / s  6 / s2
H s  
1 3 / s  2 / s2
2
4
1
1/s
1/s
-6
X s 
Y s 
-3
-2
公共点
30
Chapter 9
Example
The Laplace Transform
Consider the causal LTI system

s  2s  4
H s  
s  1s  3s  5
(a) direct form
(b) cascade form
(c) parallel form
31
Chapter 9
The Laplace Transform
§9.9 The Unilateral Laplace Transform
(单边拉氏变换)
Defining

X I s   

0
xt e  st dt
Res   max
XI s   Lxt ut 


xt   


1   j
st


X
s
e
ds
I



j

2j
0
t 0
t0
If xt  is causal,
X s   XI s 
32
Chapter 9
Example 9.33
The Laplace Transform
xt   e  atu t 
Example 9.33
xt    t   2u1 t   et u t 
Example
xt   1
Example
xt   e 2t ,    t  
33
Chapter 9
The Laplace Transform
Example 9.36 Consider the unilateral transform
s2  3
X I s  
s2
Res  2
1
X I s   s  2 
s2
Res  2
xt   u1 t   2 t   e 2t u t  for t  0
§9.9.2 Properties of the Unilateral Laplace Transform
Causal Signals:
X s   XI s 
34
Chapter 9
The Laplace Transform
1. Differentiation in the time-domain
L
xt 
I XI s 
ROC  R
dxt  LI

 sX I s   x 0 
dt
 
ROC  R
d n xt  LI
n1 
n
n1

n2







s
X
s

s
x
0

s
x
0



x
0
I
n
dt
 
 
 
Example Consider the signal xt   u  t   e  atu t 
determine the unilateral Laplace Transform of dxt 
dt
35
Chapter 9
The Laplace Transform
dxt  LI

 sX I s   x 0 
dt
 
① The Initial-Value Theorem
 
x 0   lim sX I s 
s 
② The Final-Value Theorem
x  lim xt   lim sX I s 
t 
s0
36
Chapter 9
The Laplace Transform
2. Integration in the time-domain
L
xt 
I XI s 
t
-
ROC  R
 
1
1 1 
L
I
x d 

X I s   x 0
s
s
0-
ROC  R  Res  0
- x d  - x d  0 x d
t
t
-
- x d  x 0  0 x d
1
t
t
-
-
t
0
-
LI 
x d 
e

0  s
 st
t
0
-

0

x d 

-

0-
 t x d e  st dt
0 


1 
  - xt e st dt
s 0
37
Chapter 9
The Laplace Transform
§9.9.3 Solving Differential Equations
Using the Unilateral Laplace Transform
经典解法
y t   yc t   y p t 
零输入、零状态解法
y t   y x t   y f t 
时域解
微
分
方
程
的
求
解
频域解
-1
Y  j   X  j H  j   y f t   F Y  j 
双边拉氏变换
初始状态为零
Y s   X s H s 
 y f t   L-1Y s 
复频域解
单边拉氏变换
初始状态不为零
 y t  , y x t  , y f t 
38
Chapter 9
The Laplace Transform
Example 9.38
Suppose a causal LTI system
yt   3 yt   2 yt   xt 
 
 
with initial conditions: y 0   , y 0   
Let the input to this system be xt   ut  ,
Determine the full response of the system.
   
 
sy 0  y 0  3 y 0
 /s
YI s  
 2
2
s  3s  2
s  3s  2

LI y x t 
 

LI y f t 
 
Let   2 , y 0-  β  3 , y 0-  γ  5
Full response
y t   1  e t  3e 2t
t0
39
Homework:
P729 9.32 9.33
40