Signals and Systems Lecture 26 •Properties of Laplace Transform •Analysis LTI System using LT •System Function 1 Chapter 9 The Laplace Transform §9.5.9 Integration in the Time Domain L xt X s t 1 x d X s s L Roc R Roc R Res 0 ROC的变化: ① R与 Res 0 无公共部分,积分的拉氏变换不存在。 xt e t u t 1 X s Res 1 s 1 xt 的积分不存在拉氏变换 j 0 1 2 Chapter 9 The Laplace Transform ② R与 Res 0 部分重叠。 L xt e 2t u t t j 1 Res 2 s- 2 0 1 L x d 0 Res 2 ss- 2 ③ R与 Res 0 部分重叠。 X s t s s 1s 2 Res 1 2 j 2 1 0 1 x d Res 1 s 1s 2 L 3 Chapter 9 The Laplace Transform §9.5.10 The Initial- and Final-Value Theorems 初值定理和终值定理 1. The Initial-Value Theorem xt 0 , t 0 Contains no impulses or higher order singularities at the origin. x 0 lim sX s s X s 为真分式 s 2 2s 1 X s s 1s 2s 3 2 s s 2s 1 1 x0 lim sX s lim s s s 1s 2s 3 4 Chapter 9 The Laplace Transform 2. The Final-Value Theorem xt 0 , t 0 X s 的极点均在jω轴左侧,允许在s=0有一个一阶极点 x lim xt lim sX s t 1 X s sa s 0 Res a xt lim sX s 0 ① a 0 tlim s 0 1 lim x t lim s 1 ② a 0 t s 0 s ③ a 0 终值不存在。 5 Chapter 9 The Laplace Transform §9.5.11 运用基本性质求解拉氏变换 Example 1 x t a t kT k k 0 1 X s 1 ae sT j Determine X s 1 Re s ln a T 1 ln a T Example 2 X s 1 s 1 e x t k 0 s Re s 0 Determine xt 1 u t - k k 6 Chapter 9 The Laplace Transform Example 3 X s 2 2 s 1 2 Re s 0 0 sin 0 tu t 2 s 02 L Determine xt Re s 0 x t sin t t cos t u t 7 Chapter 9 The Laplace Transform §9.7 Analysis and Characterization of LTI Systems Using the Laplace Transform yt xt ht Y s X s H s xt X s ht yt H s Y s H s ——System Function or Transfer Function 8 Chapter 9 The Laplace Transform §9.7.1 Causality Causal ROC Res max For a system with a rational system function, causal ROC Res max §9.7.2 Stability (稳定性) stable ROC jω axis 9 Chapter 9 The Laplace Transform Example 9.20 j s 1 H s s 1s 2 a Res 2 1 j Causal , unstable system b -1 Res 2 2 1 2 noncausal , stable system j c Res 1 anticausal , unstable system (反因果) 1 2 10 Chapter 9 The Laplace Transform Stability of Causal System 如果 H s 为有理函数 系统因果、稳定 H s 的极点均在 j 轴左侧, 且 Res max Consider the following causal systems a 1 H s s 1 b 1 H s ——unstable s 1s 2 ——Stable 11 Chapter 9 The Laplace Transform Causal ROC Res max For a system with a rational system function, causal ROC Res max stable ROC jω axis 12 Chapter 9 The Laplace Transform §9.7.3 LTI Systems Characterized by Linear Constant-Coefficient Differential Equations dy t 3 y t xt dt d k yt M d k xt ak bk k k dt dt k 0 k 0 N M Y s H s X s k 0 N k 0 bk s k ak s k ROC 13 Chapter 9 The Laplace Transform Example Consider a causal LTI system whose input xt and output y t related through an linear constant-coefficient differential equation of the form y t 3 y t 2 y t x t Determine the unit step response of the system. 1 t 1 2t s t e e ut 2 2 14 Chapter 9 The Laplace Transform R Example 9.24 L + yt Consider a RLC circuit in Figure 9.27 C + xt - Figure 9.27 H s 1 / LC s 2 R / L s 1 / LC 15 Chapter 9 The Laplace Transform Example 9.25 Consider an LTI system with input xt e 3t ut , Output yt e t e 2t u t . (a) Determine the system function. (b) Justify the properties of the system. (c) Determine the differential equation of the system. H s s3 s 1 s 2 Re s -1 y t 3 y t 2 y t x t 3 x t 16 Chapter 9 The Laplace Transform Example Consider a causal LTI system , 1 1. xt e 2t - t y t e 2t - t 6 dht b——unknown constant 2. 2ht e 4t u t bu t dt Determine the system function H s and b. 2 H s s s 4 Re s 0 17 Chapter 9 The Laplace Transform Example 9.26 An LTI system: 1. The system is causal. 2. H s is rational and has only two poles: s= - 2 and s=4. 3. xt 1 yt 0 4. h0 4 Determine H s Example 9.26 An LTI system: 1. The system is causal. 2. H s is rational and has only two poles: s=-2 and s=-4. 3. xt 1 yt 0 H s 4. h0 4 Determine H s 4s s 2s 4 Res 4 18 Chapter 9 The Laplace Transform Example 9.27 已知一因果稳定系统,H s 为有理函数,有一极点 在s=-2处,原点(s=0)处没有零点,其余零极点未知, 判断下列说法是否正确。 1. 2. ht e3t 的傅立叶变换收敛。 ht dt 0 3. tht 为一因果稳定系统的单位冲激响应。 dh t 4. 至少有一个极点。 dt 5. ht 为有限长度信号。 19 Chapter 9 6. H s H s 在s=-2处有极点 7. The Laplace Transform 在s=+2处有极点 lim H s 2 s 无法判断正确与否。 20 Chapter 9 例 The Laplace Transform 2t y t e ut 是系统函数为 H s 设信号 的因果全通系统的输出。 s 1 s 1 1. 求出至少有两种可能的输入 f t 都能产生 yt 。 2. 若已知 f t dt 问输入 f t 是什么? 3. 如果已知存在某个稳定(但不一定因果)的系统, 它若以 yt 作输入,则输出为 f t ,问这个输入 f t 是什么?系统的单位冲激响应是什么? 21 Chapter 9 The Laplace Transform §9.8 System Function Algebra and Block Diagram Representations (方框图) yt xt ht Y s X s H s xt X s ht yt H s Y s §9.8.1 System Functions for Interconnections of LTI Systems 1. Series interconnection 2. Parallel interconnection 3. Feedback interconnection 22 Chapter 9 The Laplace Transform Example 9.28 Consider the causal LTI system H s 1 s3 X s + 1/ s Y s X s + - + 3 1/ s Y s 3 Example 9.29 Consider the causal LTI system H s s 2 s3 H s 1 s 2 s3 23 Chapter 9 The Laplace Transform Example 9.30 Consider the causal LTI system H s 1 s 2 3s 2 (a) direct form (b) cascade form (c) parallel form Example 9.31 2 2 s 4s 6 Consider the causal LTI system H s s 2 3s 2 24 Chapter 9 The Laplace Transform §9.8.3 系统的模拟 一 基本的模拟单元 1. 加法器 X 1 s X 2 s X 1 s 1 X1 s X 2 s 1 X 2 s 2. 标量乘法器 X s a aX s X s 3. 积分器 X s X1 s X 2 s 1/s 1 X s s X s a 1 s aX s 1 X s s 25 Chapter 9 The Laplace Transform 二 方框图模拟 Example 9.29 Consider the causal LTI system H s s 2 s3 yt 3 yt xt 2xt yt xt 2 t wt xt x d 3 t y d wt yt 1/ s 1/ s 2 S1 3 S2 26 Chapter 9 The Laplace Transform 交换S1和S2的连接顺序 输入相同 yt xt 1/ s 3 系统等价为: 1/ s 2 输出相同 S2 S1 yt xt 1/ s 3 2 27 Chapter 9 The Laplace Transform 三 信号流图模拟 两个基本约定: 1. 假定所有的环路均相互接触; 1 Li i 2. 假定每一前向通路与所有的环路相互接触; k 1 H ov 1 gk k k g 1 L k k i i 28 Chapter 9 The Laplace Transform Example 9.29 Consider the causal LTI system H s s 2 s3 1 2 / s H s L1 1 3 / s 1 X s 1 公共点 1/s 2 Y s -3 yt xt 1/ s 3 2 29 Chapter 9 The Laplace Transform Example 9.31 2s 2 4s 6 Consider the causal LTI system H s 2 s 3s 2 2 4 / s 6 / s2 H s 1 3 / s 2 / s2 2 4 1 1/s 1/s -6 X s Y s -3 -2 公共点 30 Chapter 9 Example The Laplace Transform Consider the causal LTI system s 2s 4 H s s 1s 3s 5 (a) direct form (b) cascade form (c) parallel form 31 Chapter 9 The Laplace Transform §9.9 The Unilateral Laplace Transform (单边拉氏变换) Defining X I s 0 xt e st dt Res max XI s Lxt ut xt 1 j st X s e ds I j 2j 0 t 0 t0 If xt is causal, X s XI s 32 Chapter 9 Example 9.33 The Laplace Transform xt e atu t Example 9.33 xt t 2u1 t et u t Example xt 1 Example xt e 2t , t 33 Chapter 9 The Laplace Transform Example 9.36 Consider the unilateral transform s2 3 X I s s2 Res 2 1 X I s s 2 s2 Res 2 xt u1 t 2 t e 2t u t for t 0 §9.9.2 Properties of the Unilateral Laplace Transform Causal Signals: X s XI s 34 Chapter 9 The Laplace Transform 1. Differentiation in the time-domain L xt I XI s ROC R dxt LI sX I s x 0 dt ROC R d n xt LI n1 n n1 n2 s X s s x 0 s x 0 x 0 I n dt Example Consider the signal xt u t e atu t determine the unilateral Laplace Transform of dxt dt 35 Chapter 9 The Laplace Transform dxt LI sX I s x 0 dt ① The Initial-Value Theorem x 0 lim sX I s s ② The Final-Value Theorem x lim xt lim sX I s t s0 36 Chapter 9 The Laplace Transform 2. Integration in the time-domain L xt I XI s t - ROC R 1 1 1 L I x d X I s x 0 s s 0- ROC R Res 0 - x d - x d 0 x d t t - - x d x 0 0 x d 1 t t - - t 0 - LI x d e 0 s st t 0 - 0 x d - 0- t x d e st dt 0 1 - xt e st dt s 0 37 Chapter 9 The Laplace Transform §9.9.3 Solving Differential Equations Using the Unilateral Laplace Transform 经典解法 y t yc t y p t 零输入、零状态解法 y t y x t y f t 时域解 微 分 方 程 的 求 解 频域解 -1 Y j X j H j y f t F Y j 双边拉氏变换 初始状态为零 Y s X s H s y f t L-1Y s 复频域解 单边拉氏变换 初始状态不为零 y t , y x t , y f t 38 Chapter 9 The Laplace Transform Example 9.38 Suppose a causal LTI system yt 3 yt 2 yt xt with initial conditions: y 0 , y 0 Let the input to this system be xt ut , Determine the full response of the system. sy 0 y 0 3 y 0 /s YI s 2 2 s 3s 2 s 3s 2 LI y x t LI y f t Let 2 , y 0- β 3 , y 0- γ 5 Full response y t 1 e t 3e 2t t0 39 Homework: P729 9.32 9.33 40
© Copyright 2026 Paperzz