STAT 610 Homework #5 solution 3.3. Let Xi be the event that a car passes in second i. Then P (the pedastrian has to wait four seconds) = P ( At least one car in the first three seconds ∩ a car in the fourth seconds ∩ no car in the last three seconds) = P r((X1c ∩ X2c ∩ X3c )c ∩ X4 ∩ X5c ∩ X6c ∩ X7c ) = [1 − (1 − p)3 ]p(1 − p)3 3.8. (a) X ∼ Bin(1000, 1/2) since the 1000 customers choose theater randomly. 1000−x 1000 X 1000 1 x 1 < .01 1− P (X > N ) = 2 2 x x=N +1 which imples that 1000 1000 X 1000 1 < .01 2 x x=N +1 By solving the last ineqality to get N , theh smallest integer that satisfies the last inequality is 537. (b) To use the normal approximation we take X ∼ N (500, 250), where µ = 1000( 21 ) = 500 and σ 2 = 1000( 12 )( 12 ) = 250. Then X − 500 N − 500 √ P (X > N ) = P > √ < .01 250 250 Thus, P N − 500 Z> √ 250 < .01 where Z ∼ N (0, 1) From the normal table P (Z > 2.33) ' .0099 ⇒ N√−500 250 = 2.33 ⇔ N ' 537. 3.11. (a) lim M/N →p,M →∞,N →∞ = M x N −M K −x N K K! M !(N − M )!(N − K)! lim x!(K − x)! M/N →p,M →∞,N →∞ N !(M − x)!(N − M − (K − x))! In the limit, each of the factorial terms be replaced by the approximation from √ can M +1/2 −M Stirling’s formula, for example, M !/( 2πM e ) → 1. √ When this replacement is made, all the 2π and the exponential terms cancel. Thus, M N −M x K −x lim N M/N →p,M →∞,N →∞ K K M M +1/2 (N − M )N −M +1/2 (N − K)N −K+1/2 = lim N +1/2 x M/N →p,M →∞,N →∞ N (M − x)M −x+1/2 (N − M − K + x)N −M −(K−x)+1/2 We can evaluate the limit by breaking the ratio into seven terms. In some limits we use the fact that M → ∞, N → ∞ and M/N → p imply N − M = N (1 − M/N ) → ∞. The first terms is M M 1 1 = lim = −x = ex lim M −x M →∞ M − x M →∞ 1 + e M 1 Similary we get more terms lim N −M →∞ N −M N − M − (K − x) and lim N →∞ N −K N N −M N = eK−x = e−K The product of above three terms is one. Three other temrs are lim M →∞ lim N −M →∞ M M −x 1/2 =1 N −M N − M − (K − x) and lim N →∞ N −K N 1/2 =1 1/2 =1 The only term left is (M − x)x (N − N − (K − x))k−x (N − K)K M/N →p,M →∞,N →∞ x K−x N − M − (K − x) M −x = lim N −K M/N →p,M →∞,N →∞ N − K lim = px (1 − p)k−x . (b) In addition to condition of (a), we have K → ∞, p → 0, M K/N → pK → λ. By the Poisson approximation to the Binomial, we heuristically get M N −M K x e−λ λx x K −x → p (1 − p)k−x → N x x! K (c) Using Stirling’s formula as in (a), we can get lim N →∞,M →∞,K→∞,M/N →0,KM/N →λ M x N −M K −x N K e−x K x ex M x ex (N − N )K−x eK−x N K eK N →∞,M →∞,K→∞,M/N →0,KM/N →λ x! x K−x 1 KM N −M = lim x! N →∞,M →∞,K→∞,M/N →0,KM/N →λ N N K 1 M K/N = λx lim 1− x! N →∞,M →∞,K→∞,M/N →0,KM/N →λ K = = lim e−λ λx x! 2 3.12. Let X be the number of successes in n trals and Y be the number of faliures before the rth successes. FX (r − x) = P (X ≤ r − 1) = P (rth success on (n + 1) th or later trial) = P (at leastn + 1 − r faliures before the rth successes) = P (Y ≥ n − r + 1) = 1 − P (Y ≤ n − r) = 1 − FY (n − r) 3.13. For any X with support 0, 1, · · · , we have the mean and variance of the 0-truncated XT are given by EXT = ∞ X xP (XT = x) = x=1 = ∞ X P (X = x) x P (X > 0) x=1 ∞ ∞ X X 1 1 EX xP (X = x) = xP (X = x) = P (x > 0) x=1 P (X > 0) x=0 P (X > 0) In a similar way we get EXT2 = EX 2 P (X>0) . V arXt = Thus, EX 2 − P (X > 0) EX P (X > 0) (a) For Poisson(λ), P (X > 0) = 1 − P (X = 0) = 1 − P (XT = x) EXT = e−λ λ0 0! 2 = 1 − e−λ , therefore e−λ λx , x = 1, 2, · · · x!(1 − e−λ = λ/(1 − e−λ ) (λ2 + λ)/(1 − e−λ ) − (λ/(1 − e−λ ))2 r 0 r (b) For negative binomial(r, p), P (X > 0) = 1 − P (X = 0) = 1 − r−1 0 p (1 − p) = 1 − p , Then r+x−1 r p (1 − p)x x , x = 1, 2, · · · P (XT = x) = 1 − pr r(1 − p) EXT = p(1 − pr ) r(1 − p) r(1 − p) + r2 (1 − p)2 V arXT = − p2 (1 − pr ) p(1 − pr )2 V arXT 3.14. (a) P∞ x=1 −(1−p)x x log p = 1 log p P∞ x=1 = −(1−p)x x = 1, since the sum is the Tylor series for log p. (b) "∞ # "∞ # −1 X −1 X −1 1 −1 1 − p x x EX = (1 − p) = (1 − p) − 1 = −1 = log p x=1 log p x=0 log p p log p p Since the geometric series converes uniformly, ∞ EX 2 = = ∞ −1 X (1 − p) X d x(1 − p)x = (1 − p)x log p x=1 log p x=1 dp ∞ (1 − p) d X (1 − p) 1 − p −(1 − p) (1 − p)x = = 2 log p dp x=1 log p p p log p 3 Thus −(1 − p) 1−p 1 + p2 log p log p V arX = Alternatively, the mgf can be calculated, MX (t) = x ∞ −1 X (1 − p)et log(1 + pet − et ) = log p x=1 x log p and can be differentiated to obtain the moments. 3.15. The moment generating function for the negative binomial is r r 1 r(1 − p)(et − 1) p = 1 + M (t) = 1 − (1 − p)et r 1 − (1 − p)et the term r(1 − p)(et − 1) λ(et − 1) → = λ(et − 1) as r → ∞, p → 1andr(1 − p) → λ t 1 − (1 − p)e 1 Thus by Lemma 2.3.14, the negative binomial moment generating function converges to t eλ(e −1) , the Poisson mement generating function. 3.16. (a) Using integration by parts with, u = tα and dv = e−t dt, we obtain ∞ Z ∞ Z ∞ Γ(α + 1) = t(α+1)−1 e−t dt = tα (−et ) − αtα−1 (−et )dt = 0 + αΓ(α) = αΓ(α) 0 0 (b) Making the change of variable z = Z ∞ Z ∞√ t−1/2 e−t dt = Γ(1/2) = 0 0 √ √ 0 2t, i.e., t = z 2 /2, we obtain √ 2 −z2 /2 e zdz = 2 z Z ∞ e−z 2 /2 dz = 0 √ 1 Z ∞ −z2 /2 2 e dz 2 −∞ √ 2√ 2π = π = 2 The fourth eqaulity is obtained since e−z 2 /2 is even function. r p , and, 3.18. If Y ∼ negaive binomial(r, p), its moment generating function is MY (t) = 1−(1−p)e t r p from Theorem 2.3.15, MpY (t) = 1−(1−p)ept . Now use L’Hôpital’s rule to calculate lim p→0 p 1 − (1 − p)ept = lim p→1 1 1 , = (p − 1)tept + ept 1−t so the moment generating function converges to (1 − t)−r , the moment generating function of a gamma(r, 1). 4
© Copyright 2026 Paperzz