1. Determin the sequence converge or diverge, and , if converges, find lim a n , where n →∞ an = 5n 2 + 1 n 2 + 4n − 2 解答: lim a n = lim n →∞ n →∞ 2. 若已知 a n 5+ 1 n2 5n + 1 = lim =5 n + 4 n − 2 n →∞ 1 + 4 1 − 2 n n2 2 2 ) ( )( ( = 1 − 212 1 − 312 … 1 − (n +11)2 解答: ) n→∞ ) ( )( ( ,球數列之極限 lim a n a n = 1 − 212 1 − 312 … 1 − (n +11)2 ) ( )( = (1 − 12 )(1 + 12 )(1 − 13 )(1 + 13 )… 1 − (n1+1) 1 + (n1+1) 利用平方差公式可得 = n n+2 1 n+2 1 3 2 4 3 ⋅ ⋅ ⋅ ⋅ … ⋅ = ⋅ 2 2 3 3 4 n +1 n +1 2 n +1 1 n+2 1 lim an = lim ⋅ = n→∞ n →∞ 2 n + 1 2 2 2 an b − n n →∞ b an n 3. 若已知 lim a n = ∞, lim bn = ∞, lim a n − bn = k ,求 lim n →∞ n →∞ n →∞ 解答: ( (a − bn ) an + an bb + bn an b a b − n = lim n n = lim n n→∞ b n →∞ a n n→∞ a n bn a n bn n 2 2 3 3 lim = lim(a n − bn ) ⋅ lim n→∞ n→∞ (a 2 n 2 + a n bb + bn a n bn 2 ) 2 ) ) ⎛a b ⎞ = lim(an − bn ) ⋅ lim⎜⎜ n + 1 + n ⎟⎟ n →∞ n →∞ b an ⎠ ⎝ n ⎛ a b ⎜ = k ⋅ ⎜ lim n + lim1 + lim n n →∞ b n →∞ an ⎜ n n →∞ ⎝ ⎞ ⎟ ⎟ = k ⋅ (1 + 1 + 1) = 3k ⎟ ⎠
© Copyright 2026 Paperzz