Integrated Proof Transformation Services

IS
S
UN
S
SA
R
E R SIT
A
IV
A VIE N
Integrated Proof Transformation
Services
Jürgen Zimmer
IV
joint work with Andreas Meier, Geoff Sutcliffe, Yuan Zhang
S
IS
S
SA
R
University of Edinburgh, Scotland
E R SIT
A
UN
Universität des Saarlandes, Germany
A VIE N
*The author is supported by the European Union
C ALCULEMUS IHP Training Network HPRN-CT-2000-00102
c J.Zimmer
Workshop on Computer-Supported Mathematical Theory Development, Cork, 5th July, 2004
– p.1
Overview
M ATH S ERV: Semantic Reasoning Web Services
Some Systems Integrated in M ATH S ERV
Theorem Proving and Proof Transformation Services
Brokering of Proof Transformation Services
Conclusion
c J.Zimmer
Future Work
Demo
Workshop on Computer-Supported Mathematical Theory Development, Cork, 5th July, 2004
– p.2
The MathServ Framework
MathWeb Software
Bus
Web Services
Experience
Infrastructure
MathServ
Service Combination
AI
Planning
c J.Zimmer
Semantic Markup/
Ontologies
Semantic Web
Workshop on Computer-Supported Mathematical Theory Development, Cork, 5th July, 2004
– p.3
The MathServ Framework
A new framework for semantic reasoning services:
Based on Web Service technology.
Semantic markup for web services in the
Mathematical Service Description Language (MSDL):
Developed by MONET and MathBroker project.
Based on commonly agreed ontology.
Brokering mechanism retrieves and combines reasoning
services using modified POP planner.
c J.Zimmer
Workshop on Computer-Supported Mathematical Theory Development, Cork, 5th July, 2004
– p.4
Benefits of MathServ
The MathServ framework can be used by humans or
machines to...
retrieve reasoning services (by human machine)
given a semantic description of a problem.
automatically combine services to tackle a problem.
tackle subproblems in automatic or interactive theorem
proving.
No need to know the underlying reasoning system!
c J.Zimmer
Workshop on Computer-Supported Mathematical Theory Development, Cork, 5th July, 2004
– p.5
Systems Integrated as Web Services
1) Automated theorem proving systems:
EP, Otter, SPASS.
For classical first-order predicate logic with equality.
2) Otterfier Tool for proof transformation [Sutcliffe’04]:
CNF refutation
CNF refutation (BrFP) calculus
BrFP = Binary resolution, Factoring, Paramodulation
Calls Otter to replace “alien” inference steps
c J.Zimmer
Workshop on Computer-Supported Mathematical Theory Development, Cork, 5th July, 2004
– p.6
More Systems Integrated
3) The Tramp system [Meier’00]:
ND proof at assertion level.
FOF problem
+
CNF refutation (BrFP)
DEF
Formal proof
system [Fiedler’01]:
!
4) The
( DEF) :
assertion level step [Huang’94]:
Natural Language (NL) proof.
Proof quality depends on linguistic knowledge.
c J.Zimmer
Workshop on Computer-Supported Mathematical Theory Development, Cork, 5th July, 2004
– p.7
An Ontology for Service Descriptions
Thing
proofOf
Proving−Problem
Proof
1..1
logic
calc
1..1
Calculus
Result
1..1
Logic
InFormal−Proof
is−a
FO−Proving−Problem
TSTP
CNF−Problem
NL−Proof
TSTP
FOF−Problem
is−a
Formal−Proof
proof
ND−Proof
CNF−Refutation
Twega
ND−Proof
TSTP−
CNF−Refutation
0..1
FO−ATP−
Result
status
1..1
FO−ATP−
Status
...
Theorem
A
B
p
Property
a..b
i
c J.Zimmer
A subconcept of B
C
TSTP−CNF−
LC−Refutation
...
Satisfiable
Unsatisfiable
p
i individual of C
TSTP−CNF−
BrFP−Refutation
Workshop on Computer-Supported Mathematical Theory Development, Cork, 5th July, 2004
– p.8
An ATP Service in MSDL
'
&%
Service:
# "
$
The central part of an MSDL description [MICAI’04]:
problem::TSTP-CNF-Problem (Concept)
output parameters:
result::FO-ATP-Result
post-conditions:
proof(?result, ?proof)
)
pre-conditions:
(
input parameters:
type(?proof, TSTP-CNF-Refutation)
We completely omit XML details.
Conditions in Semantic Web Rule Language (SWRL)
(RDF-triples, conjunction, implications).
c J.Zimmer
Workshop on Computer-Supported Mathematical Theory Development, Cork, 5th July, 2004
– p.9
oldResult::FO-ATP-Result
output parameters:
newResult::FO-ATP-Result
pre-conditions:
proof(?oldResult, ?oldProof)
post-conditions:
proof(?newResult, ?newProof)
type(?newProof, TSTP-CNF-BrFP-Refutation)
altProof(?newProof, ?oldProof)
altProof = alternative proof
c J.Zimmer
Workshop on Computer-Supported Mathematical Theory Development, Cork, 5th July, 2004
– p.10
5
input parameters:
5
2
4- 3
1
/-
/-
,+*
/.-+
Service:
0
The Otterfier Service in MSDL
<
;
;
:
9 8
Service:
67
The Services of Tramp and P.rex
fofProblem::TSTP-FOF-Problem
input parameters:
atpResult::FO-ATP-Result
ndProof::Twega-ND-Proof
pre-conditions:
proof(atpResult, ?proof)
=
output parameters:
type(?proof, TSTP-CNF-BrFP-Refutation)
A 67
@?
>
:
Service:
6B
proofOf(ndProof, fofProblem)
post-conditions:
ndProof::Twega-ND-Proof
output parameters:
nlProof::NL-Proof
post-conditions:
proofOf(?ndProof, ?p)
=
pre-conditions:
C
input parameters:
informalProofOf(?nlProof, ?p)
c J.Zimmer
Workshop on Computer-Supported Mathematical Theory Development, Cork, 5th July, 2004
– p.11
Example Conjecture
Scenario: Given a first-order conjecture:
is a group,
,
P
E
O
R
L
Q
)
L
H N
P
E
O
5
E
O
(Criterion)
E
O
S
M
S
)
O
R
E
S G
I
conclusion:
H N
M L
K
J I
K
H G
D
,FE
D
hypotheses:
T
( DEF)
F
P
P
O
H
)
O
T
H N
H G
I
M
T
U
F
T N
M
T
J
I
T G
and some theory axioms, e.g.:
Queries:
Peter: Give me a first-order ATP system result!
Susan: Give me a ND calculus proof!
Mary: Give me a NL proof!
c J.Zimmer
Workshop on Computer-Supported Mathematical Theory Development, Cork, 5th July, 2004
– p.12
c J.Zimmer
e l
e
y
e
{e
\g
‚
V
X
n X
h
\
v
v
j i
k
i
i
i
_ ] i
_
x
_ ]
\
v
v
i
‚X
e l
e
X
Y
_
_
Xo
_
x
€
_
]
g X
_
h
e
d
‚p
t s
\
]m
e 
nmW
t s

p~
e
{e
\g
n
r
q
V
h
V
h
i
X
X
i
_ ] i
_
_
_
z
b z
^
d
v X
]$
\
e l
e
y
i
_
Xo
v
v
j i
k
i
v
j i
k
i
i

~X
_
i

qX
e l
e
i
d
l
x
i
\
v
v
y
~
qX
e l
e
X
e
W h
d
l
i
_
x
\
v
v
t s
qp
yo
g
}|
{e
d
g a
e
g
W
^\
g V
] X
V
X
WV
WV
\
v
v
e l
e
iw
i
i
X
qX
e l
e
_ ] r
_ ]
\
v
v X
$
X
_
_
_
h
d
Xo
qp
h
r
tus
g
fega
^W
b a
nW h
\
ed
\m
^
]W
\[
l
g V
] X
WV
Y
_
_
_
e
g
d
l
h
X
e
g
V
i
i
X
j i
k
l
g X
g
]d
]
d
eg a
^W
cba
]
g
] V
WV
^
\[
]W
g
V
h
i
i
X
X
X
j i
k
_
d
fega
^W
cba
_ ^
`
\[
]W
Y
Z
V
V
WV
Example: TSTP Encoding
Workshop on Computer-Supported Mathematical Theory Development, Cork, 5th July, 2004
– p.13
Peter’s Query: Execution Plan
proofOf
TSTP
FOF
Problem
Clause
Normalizer
sat−equiv
c J.Zimmer
TSTP
CNF
Problem
EP
ATP
FO−ATP−Result
proofOf
Workshop on Computer-Supported Mathematical Theory Development, Cork, 5th July, 2004
– p.14
c J.Zimmer
•
‘
¬
ž
ƒ
Š
™
•”
™
Œ
’

’
­
‡
®
Ž—
—
–
®
§
ˆ
œ
’–
Œ
•
‘
¬
ž
®
ƒ
™
•”
™
Œ
’

—
–
®
Ž—
Š §ˆ
¨
’
­
‡
‡
­
Ÿ¯
—‡
Œ—
ž—
„
’
’
Š ‰›«
‹
Š
Š
…

†
… Ž
’
Ÿ
Ÿ
Ÿ
Ÿ
‡
‡
Ÿ
›«¦
Ÿ¯
†
’ Ž
’ Š ž
Š
Š
†
Ÿ¯
‡
­
Ÿ¯
—‡
Œ—
ž—
„
’
’
Š ¥›«
‹
Š
Š
…

†
… Ž
’
…„
Š
ƒ
ƒ
ƒ

’
ª
¤
†
›
Ÿ
Ÿ
‡
„—
’
„
’
ƒ
•
Š ž

©
ª
¤
›
Ÿ
Ÿ
Ÿ
‡
’ ‡
•
Š ’

…
‘
‡
‘
›«¥
Š
•
‘
’
¢¡
ƒ
Š
•

‘
‘

‘
’
’
’
›
Ÿ
Ÿ
Ÿ
š‡
¤
¢¡
Ÿ
š‡
ˆ
¤
Š
Š
Š
Š
–—
¤
•
ž
’
š
†
œ… Ž
’
š
†
f˜Ž
’
™ –
•
‘
‘
›
ˆ
Ÿ
Ÿ
Ÿ
‡
‡
‡
‘ ‡
’
Š ‘Ž
Œ
†
Š‹¦ ‡ˆ
†
Š § ‡ˆ
¨
‘
¢
’ Ž
†
…„
…„
‘ ‡
’
œ
’ Š ž
Š
Š
…„
ƒ
Š
—
‡
†
Ÿ
Ÿ
Ÿ
• ‡
ž
’¤
•ž
Š ‘Ž
Œ
†
Š‹¥ ‡ˆ
…„
Œ
†
ƒ
•
˜

£
†
Š ‘Ž
Š
…„
›
‡ˆ
Ÿ
Ÿ
Ÿ
‡
‡
ƒ
Š
•

‘
‘
˜
’
’
£

‡š
¡¢
‡š
š
¤
¡¢
ˆ
›
ˆ
Ÿ
Ÿ
Ÿ
Ÿ
Š
Š
Š
Š
‡š
‡š
‡š
f˜Ž
–—
™
…
š
—
Ž—
’ Ž
ž
’
œ… Ž
’
š
™–
•
Œ
‘–
•”
ˆ
›
ˆ
›
ˆ
Ÿ
Ÿ
Ÿ
Ÿ
‡
’ ‡
“
Š ‘Ž
Œ
†
Š‹‰ ‡ˆ
…„
ƒ
ƒ
ƒ
Peter’s Query: A Resolution Proof
EP delivers a proof with 19 clauses in 31ms.
Workshop on Computer-Supported Mathematical Theory Development, Cork, 5th July, 2004
– p.15
Execution plan for Susan’s Query
proofOf
TSTP
FOF
Problem
Clause
Normalizer
sat−equiv
c J.Zimmer
Ep
ATP
proofOf
Otterfier
Service
NDforFOF
Twega−ND−Proof
altProof
Workshop on Computer-Supported Mathematical Theory Development, Cork, 5th July, 2004
– p.16
c J.Zimmer
Ë
Ï
ê
º
.
·
» Ü
»
¸Î
¶
ÌËͶÉ
¸
¶
´
´¶
½
ë
·
¹Ê
¾
¾
¹
½
é ¾
» ¸Ü ¹
¶
´
´¶
¹Ê
º
¾
¾
¹
¾
¾
(
(
(
ä
°
¾
»
¸Î
¶
Ù
¹Ê
¹Ê
º
¾
¾
¾
¸Ï
Â
ã°
Æ Þ
Ê
Ü Û
Ý
ÈÉ
Ë ½
(
â°
º
ÌËͶÉ
ÈÉ
È
É
»
»
¸Î
¶
¹Ê
Ê
º
¾
¾
¹
¸Ï
Â
а
Æ Þ
Ê
Ü Û
Ý
ËÍ Ú
(
Î ·
È
¹Ê
»
À
Ë
¶
ÌËͶÉ
¸
»
»
»
»
É
¹Ê
ÈÉ
È
É
¸Î
¶
ÌËͶÉ
À
Ë
¶
¹Ê
¹Ê
½
Ù
À Ç
 ÇÈ
¸´Æ
º
º
¾
¾
¾
¾
¹
ÈÉ
Ë
ÌÏÉ
¸
¸
¶
°
ß°
(
á
»
¸Î
¶
ÌËͶÉ
¹Ê
·
»
×
Æ
À
Ë
¸¶
¶
´
ÈÉ
È
É
¹Ê
½
Ù
·
¾
¾
¹
Õ°
ð
Î ·
È
á
(
æ°
Æ
½
º
×
»
·
¶
´
»
»
É
¹Ê
¹Ê
º
¾
À
Ë
¶
ÈÉ
È
É
Ù
¹Ê
¾
× ¾
Ø
¸Î
¶
ÌËͶÉ
» º
¼
À Ç
 ÇÈ
´Æ ³
µ
¸Ï
Â
а
Æ Þ
Ê
Ü Û
Ý
ËÍ Ú
(
Ú
×
¹Ê
¹
À Ç
É
¶
´
´¶ ³
µ
Ö Ä
Á
а
·
Ê
¾
¸
»¼º ¹
¶
´
´¶ ³
Ñ Ä
Á
Ò
Ò
°
½
Ê
ÓÔ
(
°
é
½
·
»
»
¸Î
¶
·
 ÇÈ
´¶ ³
àÄ
Õ°
ð
¹Ê
»
»
¸Î
¶
ÌËͶÉ
¹Ê
½
º
» º
¼
»
É
·
À Ç
 ÇÈ
¸´Æ
¶
´
´¶ ³
µ
Å Ä
Á
º
¾
¾
¾
¹
ÈÉ
Ë
ÌÏÉ
¸
¸
¶
°
(
Ú
¸Î
¶
ÌËͶÉ
¸
¶
´
´¶
½
fé¾
ÌËͶÉ
¸
¶
´
´¶ ³
µ
àÄ
ß°
°
·
½
¾
¸
»¼º ¹
¶
´
´¶ ³
µ
²±
ÀÂ ¿
Á
(
»
»
·
¸
»¼º ¹
¶
´
´Æ ³
µ
.
ÌÖÄ
â°
.
´¶ ³
µ
.
å Ä
Á
ã°
.
²±
°
.
´¶ ³
µ
.
ç Ä
è
ä
.
Ü
.
Ä
æ°
.
³ë
°
.
Ä
ND Proof answers Susan’s Query
Tramp’s ND proof with 10 steps (6 assertion level) after 20 seconds:
)
)
)
Workshop on Computer-Supported Mathematical Theory Development, Cork, 5th July, 2004
)
)
)
)
)
)
)
)
– p.17
Mary’s Query: Execution Plan with P.rex
proofOf
TSTP
FOF
Problem
Clause
Normalizer
sat−equiv
Ep
ATP
proofOf
Otterfier
Service
NDforFOF
PrexND2NL
NL−Proof
altProof
informalProofOf
c J.Zimmer
Workshop on Computer-Supported Mathematical Theory Development, Cork, 5th July, 2004
– p.18
c J.Zimmer
ø
ø
ø
ø
òó
ø
òó
ýó
óõ
ú
ü
û
û
ö
ö
ø
ø
ú
ü
ú
óõ ô
ò
òó
ýó
óõ
÷
û
ö
û
û
ö
ö
óõ ô
ò
óõ ô
ò
òó
ú
ü
÷
ø ö÷
ù
ø
ýó
óõ
û
û
û
ö
ö
óõ ô
ò
ø
ø
ø
ýó
óõ
ó
ÿ
ÿ
óõ ÿ
õ
ÿ
ú
ü
ü
ü
òþ
óõ ô
ò
÷
ö
÷
û
û
û
ö
û
ö
ö
ø
ü
ó
ÿ
ÿ
û
ö
û
û
ö
÷
ø
ó
ýó
óõ
ÿ
ü
ü
÷
ü
øù÷
ø
ÿ
þò
óõ ÿ
õ
ö
û
û
ö
ö
ÿ
ø
ø
ýó
óõ
Workshop on Computer-Supported Mathematical Theory Development, Cork, 5th July, 2004
ú
ü
÷
û
û
û
ö
ö
ö
û
ö
ø
ø
ø
ø
ÿ
ÿ
ÿ
ýó
óõ
ýó
óõ
ó
ú
ü
ü
ü
ü
òþ
÷
÷
û
ö
û
û
ö
û
ö
ö
ø
ø
ü
ü
ü
÷
þ
õ
ýó
óõ
û
ö
û
û
ö
ö
õó ô
ò
òó
ø
ýó
ýþ
ÿ
ü
ú
ü
ô
ø ö÷
ù
óõ ô
ò
òó
ú
ø ö÷
ù
óõ ô
ò
òó
û
ö
û
û
ü
.
That imby
ÿ
by
û
by
. There.
That
implies
implies that
ú
ÿ
òþ
ü
øù÷
ø
ü
óõ ô
ò
òó
þ
õ
.
ú
ü
ö
óõ ô
ò
òó
þ
õ
òó
ò
óõ ô
[...] Let
. Then
because
because
by
Thus
plies that
since
.
That implies that
by
. That leads to
because
. That implies that
by
fore
.
Therefore
implies that
.
That implies that
that
for all .
òó
íîì
ï
ñð
Mary’s Query: NL Proof
’ NL proof after 80 seconds with BASIC linguistic knowledge:
– p.19
Conclusion
The MathServ framework offers
Semantic retrieval of reasoning services.
Our broker can provide customized execution plans for a
given query.
In Computer-supported theory development:
Interactive theorem proving useful for
closing subgoals.
retrieve useful lemmas (HELM web services).
Proofs in different calculi.
c J.Zimmer
Workshop on Computer-Supported Mathematical Theory Development, Cork, 5th July, 2004
– p.20
Ongoing and Future Work
Service Execution
MONET plan executor?
Description of other reasoning systems
(e.g., model generators, decision procedures?).
More fine-grained services (like MONET).
, prove that is prime).
(e.g., given
Advanced brokering with
reasoning on ontology (subsumption test, etc.).
disjunctive plans (or re-planning).
c J.Zimmer
Workshop on Computer-Supported Mathematical Theory Development, Cork, 5th July, 2004
– p.21