Question Let X have a standard gamma distribution with = 7

Answer on Question #62107 – Math – Statistics and Probability
Question
Let X have a standard gamma distribution with 𝛼 = 7.
Compute P(X<4 or X>6)
0.912
0.625
0.812
0.713
Solution
For 𝛼 > 0 the gamma function is defined as follows:
∞
Π“(𝛼) = ∫ π‘₯ π›Όβˆ’1 𝑒 βˆ’π‘₯ 𝑑π‘₯.
0
For integer n: Π“(𝑛) = (𝑛 βˆ’ 1)!
If X is a continuous random variable, then X is said to have a gamma
distribution if the pdf of X is
π‘₯ βˆ’ πœ‡ π›Όβˆ’1
π‘₯βˆ’πœ‡
βˆ™ exp (βˆ’
(
)
)
𝛽
𝛽
𝑓(π‘₯) =
, π‘₯ β‰₯ πœ‡; 𝛼, 𝛽 > 0,
𝛽Г(𝛼)
𝑓(π‘₯) = 0, π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’;
where 𝛼 is the shape parameter, πœ‡ is the location parameter, 𝛽 is the
scale parameter, and Π“ is the gamma function.
If 𝛽 = 1 and πœ‡ = 0 then we have the standard gamma distribution.
π‘₯ π›Όβˆ’1 𝑒 βˆ’π‘₯
𝑓(π‘₯) =
, π‘₯ β‰₯ 0; 𝛼 > 0
Π“(𝛼)
When 𝑋 follows the standard gamma distribution then its cdf is
π‘₯
𝑦 π›Όβˆ’1 𝑒 βˆ’π‘¦
𝐹(π‘₯; 𝛼) = ∫
𝑑𝑦, π‘₯ > 0
Π“(𝛼)
0
This is also called the incomplete gamma function. The cumulative
distribution function of the gamma distribution can be calculated
using the function GAMMA.DIST in Microsoft Excel.
𝑃(𝑋 < 4 π‘œπ‘Ÿ 𝑋 > 6) = 𝑃(𝑋 < 4) + 𝑃(𝑋 > 6) = 𝑃(𝑋 < 4) + 1 βˆ’ 𝑃(𝑋 < 6) =
= 𝐹(4; 7) + 1 βˆ’ 𝐹(6; 7) β‰ˆ 0.110674 + 0.606303 = 0.716977 β‰ˆ
β‰ˆ 0.717.
Answer: 0.717.
Question
Let X = the time between two successive arrivals at the drive –up
window of a bank. If X has a exponential distribution with h=1 (which
is identical to a standard gamma distribution with a=1). Compute the
standard deviation of the time between successive arrivals.
2
1
3
4
Solution
The probability density function (pdf) of a exponential distribution is
β„Žπ‘’ βˆ’β„Žπ‘₯ , π‘₯ β‰₯ 0,
𝑓(π‘₯) = {
0,
π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’.
βˆ’π‘₯
In our case β„Ž = 1 and 𝑓(π‘₯) = 𝑒 , π‘₯ β‰₯ 0.
+∞
𝐸(𝑋) = ∫
π‘₯𝑓(π‘₯)𝑑π‘₯
βˆ’βˆž
+∞
=∫
0
π‘₯𝑒 βˆ’π‘₯ 𝑑π‘₯
+∞
= βˆ’βˆ«
=
π‘₯𝑑𝑒
0
βˆ’π‘₯
=
βˆ’ (π‘₯𝑒 βˆ’π‘₯ |+∞
0
βˆ’(π‘₯𝑒 βˆ’π‘₯ |+∞
0
= βˆ’ lim
𝐴→+∞
+ 𝑒 βˆ’π‘₯ |+∞
0 )=
βˆ’π΄
(𝐴𝑒 βˆ’π΄
βˆ’0+𝑒
𝑒 =π‘₯βˆ’1
∞
𝑉(𝑋) = ∫0 (π‘₯ βˆ’ 1)2 𝑒 βˆ’π‘₯ 𝑑π‘₯ = |(π‘₯ βˆ’ 1)2 = 𝑒2
+∞
βˆ’βˆ«
𝑒 βˆ’π‘₯ 𝑑π‘₯ )
0
βˆ’ lim (π‘₯𝑒 βˆ’π‘₯ |0𝐴 + 𝑒 βˆ’π‘₯ |0𝐴 ) =
𝐴→+∞
βˆ’ 1) = 1;
𝑑𝑒 = 𝑑π‘₯
1 ∞
1 βˆ’π‘’ | = ∫ 𝑒 2 𝑒 βˆ’π‘’ 𝑑𝑒 ;
𝑒 = 𝑒
𝑒 βˆ’1
βˆ’π‘₯
𝑒
∫ 𝑒2 𝑒 βˆ’π‘’ 𝑑𝑒 = βˆ’ ∫ 𝑒2 𝑑(𝑒 βˆ’π‘’ ) = βˆ’π‘’2 𝑒 βˆ’π‘’ + 2 ∫ 𝑒𝑒 βˆ’π‘’ 𝑑𝑒 = βˆ’π‘’2 𝑒 βˆ’π‘’ βˆ’
βˆ’2 ∫ 𝑒𝑑(𝑒 βˆ’π‘’ ) = βˆ’ 𝑒2 𝑒 βˆ’π‘’ βˆ’ 2𝑒𝑒 βˆ’π‘’ + 2 ∫ 𝑒 βˆ’π‘’ 𝑑𝑒 = βˆ’π‘’2 𝑒 βˆ’π‘’ βˆ’ 2𝑒𝑒 βˆ’π‘’ βˆ’ 2𝑒 βˆ’π‘’
1
1
∞
βˆ™ [βˆ’π‘’2 𝑒 βˆ’π‘’ βˆ’ 2𝑒𝑒 βˆ’π‘’ βˆ’ 2𝑒 βˆ’π‘’ | ] = βˆ™ [βˆ’0 βˆ’ 0 βˆ’ 0 + 𝑒 βˆ’ 2𝑒 + 2𝑒] = 1.
βˆ’1
𝑒
𝑒
The standard deviation is
𝜎 = βˆšπ‘‰(𝑋) = √1 = 1.
Answer: 1.
𝑉(π‘₯) =
www.AssignmentExpert.com