GENERAL FORMULA SHEET FOR MATHEMATICS
SECTION I
TRIGONOMETRIC IDENTITIES
1.
cos2 sin 2 1
2.
sin( A B) sin A cos B cos A sin B
3.
sin 2 A 2 sin A cos A
4.
1 tan 2 sec 2
1 cot 2 cosec 2
cos( A B) cos A cos B sin A sin B
cos 2 A 2 cos2 A 1 1 2 sin 2 A
1
2
1
cos A cos B [cos( A B) cos( A B)]
2
1
sin A sin B [cos( A B) cos( A B)]
2
sin A cos B [sin ( A B) sin ( A B)]
THE EXPONENTIAL AND NATURAL LOGARITHMIC FUNCTIONS
If y e x exp( x ) then x log e y ln y
y eln y
and
ln e x x
i.e. exp and ln are inverse functions. NB
ln y is defined only for y 0 .
-2-
ln
NB
ln a n n ln a
ln ab ln a ln b
Laws of Logarithms:
a x e x ln a
Fa I ln a ln b
Hb K
ln
F1 I ln a
Ha K
for a 0 .
HYPERBOLIC FUNCTIONS
cosh x
tanh
1
2
de e i,
sinh x
cosh x
x
x
sech x
sinh x
1
cosh x
1
2
de e i
x
x
cosech x
1
sinh x
Identities
cosh 2 x sinh 2 x 1
sinh ( A B) sinh A cosh B cosh A sinh B
1 tanh 2 x sech 2 x
cosh( A B) cosh A cosh B sinh Asinh B
COMPLEX NUMBERS
Argand Diagram
Cartesian Form
z x iy ,
z x iy
x Re z ,
y Im z
(complex conjugate)
Polar Form
x r cos
y r sin
z r(cos i sin ) rei
z r(cos i sin ) re i
z r x 2 y2
(modulus)
y
x
[NB check that is in the correct quadrant with (principal value)]
arg z where tan
-3-
Powers:
z n r nein [r(cos i sin )]n r n (cos n i sin n)
Roots:
n
z z
1
n
1
r nei(2k )/ n ,
(de Moivre's theorem)
k 0, 1, 2,...
Relationship between trigonometric and hyperbolic functions
cos
and
1 i
e e i cosh(i ) ,
2
d
i
cos(i) cosh
sin
1 i
1
e e i sinh(i )
2i
i
d
i
sin(i) i sinh
DIFFERENTIATION AND INTEGRATION
Elementary Derivatives and Integrals
y f (x)
dy
f ( x )
dx
xn
nx n1
x n1
( n 1)
n 1
sin x
cos x
cos x
sin x
tan x
sec2 x
ex
ex
1
x
ln x
NB
xn
sinh x
cosh x
cosh x
sinh x
tanh x
sech 2 x
The indefinite integrals in the left-hand column each require an arbitrary constant
e.g.
z
1
dx ln x C .
x
-4-
Further Standard Derivatives and Integrals
y f (x)
dy
f ( x )
dx
sec x
sec x tan x
cosecx
cosecx cot x
cot x
cosec 2 x
Fx I
Ha K
x
arcsinhFI
Ha K
x
arccoshFI
Ha K
1
x
arc tanFI
Ha K
a
1
x
arc tanhFI
Ha K
a
1
arcsin
2
a x2
1
a2 x 2
1
x 2 a2
1
2
a x2
1
a x2
2
Rules for Differentiation
Product:
d
dv
du
(uv ) u v
dx
dx
dx
Chain Rule:
if y y(u) and u u( x ) then
dy dy du
dx du dx
Implicit Differentiation:
Parametric Differentiation:
FI
HK
d u
dx v
Quotient:
use the chain rule
du
dv
u
dx
dx
v2
(change of variable)
d
df dy
[ f ( y )]
dx
dy dx
x x(t ), y y(t ) where 't' is a parameter
dy dy / dt
dx dx / dt
v
-5-
Newton-Raphson Method
Numerical procedure for the solution of f ( x ) 0 : the next approximation xn1 is
xn1 xn
bg
bg
f xn
f xn
where xn is the current approximation to the root.
Methods of Integration
z
z
z
z
2x2 1
f ( x )dx
Substitution (change of variable):
f [ x (u)]
dx
du ,
du
where x x (u)
f ( x )
dx ln f ( x ) C
f ( x)
Logarithmic integral:
Partial fractions:
e.g.
d
(1 2 x ) x 3 x 4
2
i
dx
zLM
N
NB divide first if necessary.
z
Integration by parts:
u
z
dv
du
dx uv v dx
dx
dx
Numerical Integration
ah
Trapezium rule:
z
a
h
f ( x )dx [ f (a) f (a h)]
2
Repeat for n strips of equal width h
z
b
f ( x )dx
a
ba
with ordinates fk f xk
n
bg
b
g
h
f0 2 f1 f2 ... fn1 fn
2
Simpsons rule: basic estimate for two strips
a2 h
z
a
h
f ( x )dx [ f (a) 4 f (a h) f (a 2h)]
3
Repeat for an even number n of strips of equal width h
ba
n
O
P
Q
A
Bx C
2
dx
1 2 x x 3x 4
-6-
z
b
f ( x )dx
a
b
gb
g
h
f0 4 f1 f3 ... 2 f2 f4 ... fn
3
PARTIAL DIFFERENTIATION
Partial Derivatives
If u( x, y) is a function of x and y
u
ux derivative of u with respect to x
x
u
uy derivative of u with respect to y
y
(y kept constant)
(x kept constant)
Change of Variables (Chain rule)
If x x(s, t ) , y y(s, t ) then f ( x, y) becomes F(s, t ) :
F f x f y
s x s y s
F f x f y
.
t x t y t
SERIES
Arithmetic Progression (A.P.): sum of 'n' terms
1
2
1
2
Sn a ( a d ) ( a 2 d ) .... [ a ( n 1)d ] n[2 a ( n 1)d ] n( a l )
where l a (n 1)d is the last term.
Geometric Progression (G.P.):
Sn a ar ar ... ar
2
S ar n1
n 1
a
1 r
n 1
if
d i
a 1 rn
1 r
r 1
(sum of 'n' terms)
(sum to infinity)
Taylor Series:
( x a )2
( x a )3
f ( x ) f ( a ) ( x a ) f ( a )
f ( a )
f ( a ) ...
2!
3!
expresses f(x) as a power series about the point x a . (See Section II for the truncated Taylor
series and remainder term.)
-7-
Maclaurin Series:
f ( x ) f ( 0 ) x f ( 0 )
x2
x3
f ( 0 )
f ( 0 ) ...
2!
3!
This is the special case of the Taylor series when a 0 i.e. a power series expansion for f(x)
about the origin. The following are examples of Maclaurin series.
Binomial Series:
(1 x )n 1 nx
n( n 1) 2 n( n 1)( n 2 ) 3
x
x ...
2!
3!
If n is a positive integer, the series terminates and is valid for all x. The coefficient of x r is then
n
n!
the usual Binomial coefficient
.
r
r !( n r )!
F
IJ
G
HK
If n is not a positive integer, the series is valid for 1 x 1.
Trigonometric series: sin x x
cos x 1
x3 x5 x7
...
3! 5 ! 7 !
2
4
6
x
x
x
...
2! 4! 6!
U
||
V
||
W
x2 x3
...
2 ! 3!
Exponential series:
ex 1 x
Logarithmic series:
x2 x3 x 4
ln (1 x ) x
...
2
3
4
(valid for all x).
(valid for all x).
(valid for 1 x 1) .
-8-
VECTORS
Components
b
a a1i a2 j a3k a1, a2 , a3
g
a a12 a22 a32
Scalar Product
a b a b cos a1b1 a2 b2 a3b3
, the vectors are perpendicular
2
or orthogonal and a b 0 .
If
Vector Product
i j k
a b a b sin n a1 a2 a3
b1 b2 b3
where n is a unit vector normal (i.e. orthogonal) to a and b
such that (a, b, n) is a right-hand set. Hence, a b is
perpendicular to both a and b.
CONIC SECTIONS
Circle:
( x p)2 ( y q)2 r
Ellipse:
x 2 y2
1
a2 b2
centre ( p, q) , radius r
-9-
Hyperbola:
x 2 y2
1
a2 b2
with asymptotes y
Rectangular hyperbola:
b
x
a
xy c
with asymptotes x 0 and y 0
y2 4ax
Parabola:
x at 2
parametric equations
y 2at
COMPLETING THE SQUARE
ax
2
2
L
O
F
bI F
b 2 4ac I
M
bx c a G
x J G 2 JP
M
H 2a K H 4a KP
N
Q
- 10 -
SECTION II
VECTORS (See also Section I for elementary vectors)
Vector Dynamics
Derivatives of unit radial r and transverse vectors:
d
r
dt
d
r
dt
Moment M of a force F about P is
M dF
Velocity v of a point P in a rotating body is
v d
2-D Motion: radial and transverse components of
velocity
v r rr r
acceleration
1 d 2
r r 2 r
r
r dt
d
i
di
3-D Motion: with the usual notation
velocity
v V r
acceleration
r ( r)
a A 2 V
Grad, Div and Curl
Vector operator del:
i
j k
x
y
z
- 11 Gradient of a scalar field ( x, y, z) :
F
I
j k J
i j k
G
Hx y z K x y z
grad i
Divergence of a vector field V( x, y, z ) V1i V2 j V3k :
F
I
V V V
j k J b
V i V j V kg
G
Hx y z K
x y
z
divV V i
1
2
1
3
2
3
Curl (or rotation) of a vector field V( x, y, z)
i
Fi j k IJ bV i V j V kg
curl V V G
Hx y z K
x
1
2
3
V1
j
k
y
z
V2
V3
SERIES
Taylor Series for a function of one variable (See Section I for elementary Taylor series)
f ( x ) f ( a ) ( x a ) f ( a )
( x a )2
( x a)n1 (n1)
f ( a)...
f
( a) Rn
2!
( n 1)!
where the remainder after 'n' terms is
Rn
( x a ) n ( n)
f ()
n!
with lying between a and x i.e. a ( x a), 0 1 .
Fourier Series
For a function f(x) defined in the interval L x L
f ( x)
a0
nx
nx
an cos
bn sin
2 n1
L
L
F
H
I
K
z
z
where
L
1
nx
an
f ( x ) cos
dx
L L
L
L
1
nx
bn
f ( x )sin
dx .
L L
L
- 12 -
Taylor series for a function of two variables
f ( x, y ) f ( a, b ) ( x a ) f x ( y b ) fy
1
( x a)2 f xx 2( x a)( y b) f xy ( y b)2 f yy
2!
1
( x a)3 f xxx 3( x a)2 ( y b) f xxy 3( x a)( y b)2 f xyy ( y b)3 f yyy ...
3!
n
n
s
s
f
f
2 f
where fx , fy , f xy
, ... are all evaluated at the point ( x, y) (a, b) .
x
y
xy
STATIONARY POINTS OF f (x, y)
The function f ( x, y) has a stationary point at (a, b) if
f
0
x
and
f
0
y
at
( a, b )
Identifying the Stationary Point (a, b)
I.
Maximum/Minimum Point
di
fxx fyy fxy
II.
2
and
fxx and
fyy 0 MAXIMUM
fxx and
fyy 0
Saddle Point
di
fxx fyy fxy
III.
2
If
di
fxx fyy fxy
2
then further investigation is necessary.
MINIMUM
- 13 -
NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS
1.
Approximate solution of the first-order equation
bg
y f ( x, y ) ,
y x0 y0
Euler Method:
'k'-notation
b g
yn1 yn hf xn , yn
b g
yn1 yn k
k hf xn , yn
ynp1 yn k1
k1 hf xn , yn
Improved Euler Method
b g
h
fb
x ,y g
fe
x
2
ynp1 yn hf xn , yn
yn 1 yn
2.
n
n
p
n 1 , yn 1
j
yn 1 yn
k2
bk k g
1
n 1
p
n 1
2
The above methods can be extended to the pair of first-order equations
bg
zb
x g
z
y f ( x, y, z ) ,
y x0 y0 ,
z g( x, y, z ) ,
e.g.
1
2
b g
hf e
x ,y j
0
0
.
b g
hgb
x ,y ,z g
yn 1 yn hf xn , yn , zn
Euler Method:
zn1 zn
n
n
n
Improved Euler (using 'k' notation):
ynp1 yn k1
znp1 zn l1
3.
b g
l hgb
x ,y ,z g
k hf e
x ,y ,z j
l hge
x ,y ,z j
k1 hf xn , yn , zn
1
bk k g
bl l g
yn 1 yn
1
2
zn 1 zn
1
2 1
1
2
2
n
n
n
2
n 1
p
n 1
p
n 1
2
n 1
p
n 1
p
n 1
Extension to the second-order equation
y g( x, y, y) ,
bg
y x0 y0 ,
bg
y x0 y0
Let y z , y z and write as the pair of first-order equations [and use (2) with f ( x, y, z) z ]
y z ,
z g( x, y, z) ,
bg
bg
y x0 y0 ,
z x0 y0 .
- 14 -
LAPLACE TRANSFORMS
The Laplace transform of the function f (t ) is
z
k p
F(s) e st f (t )dt L f (t )
0
provided the integral exists.
Standard Laplace Transforms
f (t )
L
1
L
1
t
t n n 1, 2, 3,...
e at
sin at
cos at
sinh at
cosh at
F( s )
1
s
1
s2
n!
s n 1
1
sa
a
2
s a2
s
2
s a2
a
2
s a2
s
2
s a2
(t )
1
(t a)
e as
H (t a)
e as
s
- 15 -
Properties of Laplace Transforms
1.
Linear operator:
L{af (t) bg(t )} aL{ f (t )} bL{g(t )}
2.
First shift theorem:
L e f (t ) F ( s a )
3.
Derivatives:
L{ f (t )} sF(s) f (0)
at
{
}
2
L{ f (t )] s F(s) sf (0) f (0)
R
U
F( s )
f
(
u
)
du
S
V
z
T Ws
t
4.
Integral:
L
0
L{t f (t )}
dF( s)
ds
5.
Multiplication by t:
6.
Second shift theorem: L{H(t a) f (t a)} e
as
F(s)
© Copyright 2026 Paperzz