ma2176a5 Derivative and Differentiation 1. If y x sin x , prove that x 2 y' '2 xy'(2 x 2 ) y 0 . Proof: y x sin x y ' sin x x cos x y " cos x cos x x sin x 2 cos x x sin x . So x 2 y' '2 xy'(2 x 2 ) y x 2 2 cos x x sin x 2 xsin x x cos x 2 x 2 x sin x x 3 sin x sin x x 2 2 cos x 2 cos x x 2 sin x sin x 0 2. If u ax 2 2bx c , prove that Proof: du d dx dx ax 2 2bx c ax b 1 2 d 2ax 2 3bx c ( xu) dx u 1 1 1 d 2 (ax 2bx c) 2 (ax 2 2bx c) 2 (2ax 2b) 2 dx ax b u (ax 2 2bx c) Then d du ax b ax 2 bx u 2 ( xu) x u x u dx dx u u 2 2 2 ax bx ax 2bx c 2ax 3bx c u u 3. Find from first principle the derivative of 2 x sin 2 x . Solution: d 2 x sin 2 x 2( x h )sin 2( x h ) 2 x sin 2 x lim h 0 dx h 2 x 2h sin 2 x cos 2h cos 2 x sin 2h 2 x sin 2 x (2 x 2h )sin(2 x 2h ) 2 x sin 2 x lim lim h 0 h 0 h h 2 x sin 2 x cos 2h 2h sin 2 x cos 2h 2 x cos 2 x sin 2h 2h cos 2 x sin 2h 2 x sin 2 x lim h 0 h 2 x sin 2 x cos 2h 1 2h sin 2 x cos 2h 2 x cos 2 x sin 2h 2h cos 2 x sin 2h lim h 0 h h h h cos 2h 1 sin 2h 2sin 2 x lim cos 2h 4 x cos 2 x lim 2 cos 2 x lim sin 2h h 0 h 0 h 0 h 2h 2sin 2 h sin h 2 x sin 2 x lim 2sin 2 x 4 x cos 2 x 2 x sin 2 x lim 2sin h lim 2sin 2 x 4 x cos 2 x h 0 h 0 h 0 h h 2sin 2 x 4 x cos 2 x 2 x sin 2 x lim h 0 4. Differentiate the following functions with respect to x: 1 (a) 1 2 x 5x (b) sin 3 (2 x) 5 cos( x 3 1) (a) 2 3000 ln ln ln x Solution: (a) 3000 2999 d 1 2 x 5x 2 3000 1 2 x 5 x 2 2 10 x dx (b) d sin 3 2 x 5 cos x 3 1 3 sin 2 2 x (2) 5sin x 3 1 3 x 2 6sin 2 2 x 15 x 2 sin x 3 1 dx (c) d ln x d 1 dx ln(ln x ) d 1 x ln x ln ln(ln x ) dx dx ln ln x ln ln x ln x ln ln x x ln x ln ln x 5. Determinate the derivative g (x ) in terms of f x (a) g ( x ) f x 2 1 (b) g ( x) f f ( x) Solution: (a) g ( x ) f x 2 1 g '( x ) f ' x 2 1 2 x 2 xf ' x 2 1 (b) g ( x) f f ( x) g '( x) f ' f ( x) f '( x) 6. Suppose f is a differentiable function. Find d f (2 x) (a) dx d f (sin 2 x) (b) dx d f x 2 1 (c) dx d [ f ( x )] 2 (d) dx Solution: (a) d f (2 x) 2 f ' (2 x) dx 2 (b) d f (sin 2 x) 2(cos 2 x) f ' (sin 2 x) dx (c) d f x 2 1 2 xf ' x 2 1 dx (d) d f ( x )2 2 f ( x ) f '( x ) dx 7. Find the values of a and b (in terms of c) such that f ' (c ) exists, where 1 if | x | c f ( x) |x| ax b if | x | c Solution: 1 if x c x 1 if | x | c f ( x) |x| f ( x) ax b if c x c ax b if | x | c 1 if x c x In order that f ' (c ) exists, f (x) must be continuous at x c . 1 1 That is, lim f ( x) lim lim f ( x) ac b f (c) . x c x c x c x c 1 1 1 cx xc (ac b) f ( x ) f (c ) lim lim x lim x c lim xc lim xc x c x c x c x c x c x c x c x c xc xc 1 1 lim 2 x c xc c f ( x ) f (c ) ax b (ac b) lim lim x c x c xc xc a ( x c) lim a x c xc f ( x ) f (c ) 1 f ( x ) f (c ) 2 lim a. That f ' (c ) exists means lim x c x c xc xc c 1 1 Therefore, a 2 .and put in ac b . c c 3 1 1 c 1 We have b c 2 b c 2 . c c c So b c 2 . 3 1 a c 2 Finally, we have 3 b c 1 c A function y of x is defined by the equation sin( x y ) m sin y . Express y explicitly dy 1 m cos x in terms of x. Hence, or otherwise, show that . dx 1 2 m cos x m 2 8. Proof: sin( x y ) m sin y sin x cos y cos x sin y m sin y sin x cos y m cos x sin y sin y sin x sin x tan y cos y m cos x m cos x sin x y tan 1 m cos x Then sin x d tan 1 dy m cos x dx dx = sin x d 2 m cos x (m cos x ) cos x sin x (m cos x) 2 dx 2 m cos x 2 sin 2 x sin x 1 (m cos x) 2 m cos x 1 m cos x 1 2 m cos x m 2 9. Let f be a differentiable function. Prove that if f is odd, then f ' is even. Proof: f ( x h) f ( x ) f ( x h) f ( x) f ' ( x) lim lim h0 h0 h h f x ( h) f ( x ) f ( x h) f ( x) f x ( h) f ( x ) lim lim lim h0 h0 h0 h h h f ' ( x) 10. Let y x 1 cot x , find dy . dx Solution: 4 y x 1 11. cot x dy 1 ln y cot x ln x 1 dx csc x ln x 1 cot x y x 1 dy cot x cot x cot x cot x y csc x ln x 1 x 1 x 1 csc x ln x 1 dx x 1 x 1 Show that f ' ( x) 0 , where f ( x) tan 1 x tan 1 1 . x Solution: 1 d 1 1 1 x f ( x) tan 1 x tan 1 f ' ( x) 2 1 dx x 1 x 1 2 x 2 1 x 1 1 1 0 2 2 2 2 1 x 1 x x 1 x 1 x2 12. Differentiate tan 1 (ln x) with respect to x. Solution: d 1 ln x d 1 1 x tan (ln x ) dx 2 2 2 dx 1 ln x 1 ln x x 1 ln x x t 2 2 Consider the parametric curve where t 3 y t dy d 2 y , Find and the equation of the tangent line to the curve at the point 3,1 . dx dx 2 Solution: Method 1: 2 2 3 x t 2 3 2 . x y 2 y x 2 3 y t Then 3 1 1 1 dy 3 d2y 1 3 3 2 2 y x 2 x 2 , 2 x 2 2 x 2 2 dx 2 dx 4 22 Method 2: dx d 2 y dy d 2 x dy dy dy 2 2 d dv dy dt d y d dy d dt dt 2 dt 2 dt dt dt dt 2 dx dx dx dx dx dx dx dt dx dx dx dx dt dt dt dt 13. 5 d 2x dx 2 t 2 x t 2 dt dy 3t 2 3 dt 2 . So t 3 2 dx 2t 2 y t dy 3t 2 d y 6t dt 2 dt dx d 2 y dy d 2 x 2 2 d y dt dt 2 dt dt 2 dt 2t 6t 2 3t dt 3 dt 2 dx 2 dx dx 2 4t 2 dx dx dt 2 1 dt dt 1 t 0 . dx dx 2t 1 1 dy 3 3 d 2 y 3 dt 3 1 3 1 3 x 2 2 t x 22 , As a result, 1 2 dx 2 2 dx 2 dx 2 2t 2 2 x 2 2 4 dy 3 The slope of the tangent line to the curve at the point 3,1 = . x 3 dx 2 3 Therefore, the equation of the tangent line to the curve at the point 3,1 is: y 1 x 3 2 In addition, x t 2 2 t x 2 2 also x t 2 2 1 2t 14. Let y v 2 v, v x d2y , find . x 1 dx 2 Solution: dy dy dv dx dv dx d 2 y d dy d dy dv dy d dv dv d dy dx 2 dx dx dx dv dx dv dx dx dx dx dv 2 dy d 2v dv d dy dv dy d 2v d 2 y dv dv dx 2 dx dv dv dx dv dx 2 dv 2 dx d 2 v x 1 x dv x 1 x 2 1 x 2 3 2 2 2 x 1 x 1 v dx dx x 1 x 1 x 1 y v 2 v dy d2y 2 v 1 2 dv dv 2 Therefore, 2 d 2 y dy d 2v d 2 y dv 2 1 2 2v 1 3 4 2 2 2 dx dv dx dv dx x 1 x 1 2 2v 1 x 1 3 2 x 1 4 2x 2 1 4 x 2 x 1 2 6 x 4 2 x 1 3 4 4 4 x 1 x 1 x 1 x 1 6 By Leibniz’s theorem on repeated differentiation, we have n dn d n f n1 d i g d n i f dng d i g d n i f , where fg g C f C n i dxi dxni dxn n i dx n dx n i 1 dxi dx n i i 0 15. d0 f d 0g f , g. dx 0 dx 0 Find the nth derivatives of the following functions: e x cos 2 x (a) x 3e2 x (b) 1 (c) x 1 2 x 1 Solution: (a) di f f x e x i e x , i 0,1,2, dx d 2i g d 2i 1g i 2i i 1 g x cos 2 x 2i 1 2 cos 2 x, 1 22i 1 sin 2 x, i 0,1,2, 2 i 1 dx dx So n i x n d i cos 2 x d e dn x e cos 2 x n Ci dxi dx n dx n i i 0 If n 2m where m is a nonnegative integer, then n i x n d i cos 2 x d e dn x e cos 2 x C n i dxi dx n dx n i i 0 n 2i n 2 i 1 e x m 1 ex d 2i cos 2 x d d 2i 1 cos 2 x d n C2 i n C2i 1 dx 2i dx n 2i dx 2i dx n 2i i 0 i 0 m m m 1 n C2i 1 22i cos 2 x e x n C2i 1 1 22i 1 sin 2 x e x i i 0 i 1 i 0 If n 2m 1 , where m is a nonnegative integer, then n i x n d i cos 2 x d e dn x e cos 2 x C n i dxi dx n dx n i i 0 n 2i n 2 i 1 ex m ex d 2i cos 2 x d d 2i 1 cos 2 x d n C2 i n C2i 1 dx 2i dx n 2i dx 2i dx n 2i i 0 i 0 m m m n C2i 1 22i cos 2 x e x n C2i 1 1 22i 1 sin 2 x e x i i 0 i 1 i 0 (b) 3i d i f 3 Px i f x x i dx 0 3 i 0,1,2,3 i 4,5, , where 3 Pi i ! 3 Ci 7 dig 2i e2 x , i 0,1,2, i dx g x e2 x So, n d i e2 x d n i x 3 n d n 3 2x If n 3 , n x e n Ci n Ci 2i e2 x 3 Pn i x 3n i i n i dx dx dx i 0 i 0 If n 3 , n n d i e 2 x d n i x 3 d i e 2 x d n i x 3 d n 3 2x x e n Ci dx i dx ni n Ci dx i dx ni dx n i 0 i n 3 n i n 3 i 2x 3 n i n Ci 2 e 3 Pn i x j i n 3 3 n Cn3 j 2 j n3 e2 x 3 P3 j x j j 0 n Cn 3 j n C3 j 3 j 0 n C3 j 2 j n 3 e 2 x 3 P3 j x j (c) 1 d n 1 1 n ! f x n x 1 dx x 1 x 1n 1 n n 1 d n 1 1 2 n ! g x n , n 0,1, 2, 2x 1 dx 2 x 1 2 x 1n 1 So 1 n i 1 di n d n d 1 2x 1 x 1 C n i dx i dx n x 1 2 x 1 i 0 dx n i n 1 2i i ! 1 n i ! n n ! 1 2i i ! n i ! n Ci C n i i 1 n i 1 i 1 n i 1 i 0 i 0 i ! n i ! 2 x 1 x 1 2 x 1 x 1 n n 1 2i n ! i 1 n i 1 i 0 2 x 1 x 1 n i n i n -End- 8
© Copyright 2026 Paperzz