Section 4.4 – Properties of Definite Integrals

Section 4.4 – Properties of Definite Integrals
Theorem:
If a < b < c, then for any number b between a and c, the integral from a
to c is the integral from a to b plus the integral from b to c.
𝑐
𝑓 π‘₯ 𝑑π‘₯ =
π‘Ž
𝑐
𝑏
𝑓 π‘₯ 𝑑π‘₯
𝑓 π‘₯ 𝑑π‘₯ +
π‘Ž
𝑏
Section 4.4 – Properties of Definite Integrals
Example:
Calculate the area under the
given curve between π‘₯ = βˆ’3
and π‘₯ = 3.
βˆ’π‘₯ + 6 π‘“π‘œπ‘Ÿ
𝑓 π‘₯ =
π‘₯2
π‘“π‘œπ‘Ÿ
3
π‘₯≀2
π‘₯>2
3
2
𝑓 π‘₯ 𝑑π‘₯ =
π‘₯ 2 𝑑π‘₯
βˆ’π‘₯ + 6 𝑑π‘₯ +
βˆ’3
βˆ’3
3
2
π‘₯3 3
π‘₯2
2
𝑓 π‘₯ 𝑑π‘₯ = βˆ’ + 6π‘₯
+
3 2
βˆ’3
2
βˆ’3
= 32.5 + 6.3333
3
𝑓 π‘₯ 𝑑π‘₯ = 38.8333
βˆ’3
Section 4.4 – Properties of Definite Integrals
Example:
Calculate the area under the given
curve between π‘₯ = βˆ’1 and π‘₯ = 6.
𝑓 π‘₯ = 2π‘₯ βˆ’ 4
2π‘₯ βˆ’ 4 = 0
π‘₯=2
βˆ’2π‘₯ + 4
𝑓 π‘₯ =
2π‘₯ βˆ’ 4
π‘“π‘œπ‘Ÿ
π‘“π‘œπ‘Ÿ
π‘₯≀2
π‘₯>2
6
𝑓 π‘₯ 𝑑π‘₯ =
βˆ’1
6
2
2π‘₯ βˆ’ 4 𝑑π‘₯
βˆ’2π‘₯ + 4 𝑑π‘₯ +
2
βˆ’1
2π‘₯ 2
2
βˆ’
+ 4π‘₯
+
βˆ’1
2
2π‘₯ 2
6
βˆ’ 4π‘₯
2
2
2
βˆ’π‘₯ 2 + 4π‘₯
+ π‘₯ 2 βˆ’ 4π‘₯ 6
βˆ’1
2
6
= 9 + 16 β†’
𝑓 π‘₯ 𝑑π‘₯ = 25
βˆ’1
Section 4.4 – Properties of Definite Integrals
𝑨𝒓𝒆𝒂 π‘©π’†π’•π’˜π’†π’†π’ π‘ͺ𝒖𝒓𝒗𝒆𝒔
As the number of rectangles increased, the approximation of the area under the curve
approaches a value.
If a continuous function, f(x), has an antiderivative, F(x), on the interval [a, b], then
𝑏
∞
lim
βˆ†π‘₯β†’0
Copyright  2010 Pearson Education, Inc.
𝑓 π‘₯𝑖 βˆ†π‘₯ =
𝑖=1
𝑓 π‘₯ 𝑑π‘₯ = 𝐹(𝑏) βˆ’ 𝐹(π‘Ž)
π‘Ž
Section 4.4 – Properties of Definite Integrals
𝑨𝒓𝒆𝒂 π‘©π’†π’•π’˜π’†π’†π’ π‘ͺ𝒖𝒓𝒗𝒆𝒔
If a continuous function, f(x), has an antiderivative, F(x), on the interval [a, b], then
𝑏
∞
lim
βˆ†π‘₯β†’0
𝑓 π‘₯𝑖 βˆ†π‘₯ =
𝑖=1
𝑓 π‘₯ 𝑑π‘₯ = 𝐹(𝑏) βˆ’ 𝐹(π‘Ž)
π‘Ž
π‘€π‘–π‘‘π‘‘β„Ž π‘œπ‘“ π‘Ÿπ‘’π‘π‘‘π‘Žπ‘›π‘”π‘™π‘’ = 𝑑π‘₯
π‘™π‘’π‘›π‘”π‘‘β„Ž π‘œπ‘“ π‘Ÿπ‘’π‘π‘‘π‘Žπ‘›π‘”π‘™π‘’ = π‘’π‘π‘π‘’π‘Ÿ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘› βˆ’ π‘™π‘œπ‘€π‘’π‘Ÿ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘›
π‘™π‘’π‘›π‘”π‘‘β„Ž π‘œπ‘“ π‘Ÿπ‘’π‘π‘‘π‘Žπ‘›π‘”π‘™π‘’ = 𝑓 π‘₯ βˆ’ 𝑔(π‘₯)
Copyright  2010 Pearson Education, Inc.
Section 4.4 – Properties of Definite Integrals
Example:
Calculate the area bounded by the graphs of
𝑓 π‘₯ = π‘₯ 2 + 1, 𝑔(π‘₯) = π‘₯, π‘₯ = βˆ’1 and π‘₯ =
1.
𝑏
π΄π‘Ÿπ‘’π‘Ž =
𝑓 π‘₯ βˆ’ 𝑔(π‘₯) 𝑑π‘₯
π‘Ž
1
π‘₯ 2 + 1 βˆ’ π‘₯ 𝑑π‘₯
π΄π‘Ÿπ‘’π‘Ž =
βˆ’1
π‘₯3
π‘₯2 1
+π‘₯βˆ’
3
2 βˆ’1
0.8333 βˆ’ (βˆ’1.8333)
2.6667
Section 4.4 – Properties of Definite Integrals
Example:
Calculate the area bounded by the graphs of
𝑓 π‘₯ = π‘₯ 2 π‘Žπ‘›π‘‘ 𝑔(π‘₯) = 4π‘₯.
𝑏
π΄π‘Ÿπ‘’π‘Ž =
𝑓 π‘₯ βˆ’ 𝑔(π‘₯) 𝑑π‘₯
π‘Ž
Find the points of intersection
𝑓 π‘₯ = 𝑔(π‘₯)
π‘₯ 2 = 4π‘₯
π‘₯ 2 βˆ’ 4π‘₯ = 0
4π‘₯ 2 π‘₯ 3 4
βˆ’
2
3 0
π‘₯(π‘₯ βˆ’ 4) = 0
3
π‘₯
4
2π‘₯ 2 βˆ’
3 0
π‘₯ = 0, 4
4
4π‘₯ βˆ’ π‘₯ 2 𝑑π‘₯
π΄π‘Ÿπ‘’π‘Ž =
10.6667 βˆ’ 0
0
10.6667
Section 4.4 – Properties of Definite Integrals
Average Value of a Continuous Function
1
π΄π‘£π‘’π‘Ÿπ‘Žπ‘”π‘’ π‘‰π‘Žπ‘™π‘’π‘’ =
π‘βˆ’π‘Ž
Copyright  2010 Pearson Education, Inc.
𝑏
𝑓 π‘₯ 𝑑π‘₯
π‘Ž
Section 4.4 – Properties of Definite Integrals
Average Value of a Continuous Function
Find the average value of the function 𝑓 π‘₯ = π‘₯ 2 + 2 over the interval 1, 3
1
𝐴𝑉 =
3βˆ’1
3
π‘₯ 2 + 2 𝑑π‘₯
1
1 π‘₯3
𝐴𝑉 =
+ 2π‘₯
2 3
1
𝐴𝑉 =
2
3
1
27
1
+6 βˆ’
+2
3
3
1
7
𝐴𝑉 = 15 βˆ’
2
3
𝐴𝑉 =
19
= 6.3333
3
6.3333
Section 4.4 – Properties of Definite Integrals
A company’s marginal revenue and marginal cost functions are as follows:
𝑹′ 𝒕 = πŸ•πŸ“π’†π’• βˆ’ πŸπ’•
𝑹 𝟎 = 𝟎,
π‘ͺβ€² 𝒕 = πŸ•πŸ“ βˆ’ πŸ‘π’•
π‘ͺ 𝟎 = 𝟎.
a) Find the total profit from the first 10 days.
b) Find the average daily profit from the first 10 days.
Reminder:
π‘·π’“π’π’‡π’Šπ’• = 𝑹 𝒕 βˆ’ π‘ͺ(𝒕)
𝒃
𝑻𝒐𝒕𝒂𝒍 π‘¨π’„π’„π’–π’Žπ’–π’π’‚π’•π’†π’… π‘·π’“π’π’‡π’Šπ’• =
𝑹′ 𝒕 βˆ’ π‘ͺβ€²(𝒕)
𝒂
𝟏𝟎
πŸ•πŸ“π’†π’• βˆ’ πŸπ’• βˆ’ (πŸ•πŸ“ βˆ’ πŸ‘π’•) 𝒅𝒕
a) 𝑻𝒐𝒕𝒂𝒍 π‘¨π’„π’„π’–π’Žπ’–π’π’‚π’•π’†π’… π‘·π’“π’π’‡π’Šπ’• =
𝟎
𝟏𝟎
πŸ•πŸ“π’†π’•
=
𝟎
𝟐
𝒕
+ 𝒕 βˆ’ 75 𝒅𝒕 = πŸ•πŸ“π’†π’• + + πŸ•πŸ“π’• 𝟏𝟎
𝟐
𝟐
= $𝟏, πŸ”πŸ“πŸ, πŸπŸŽπŸ—. πŸ—πŸ’
Section 4.4 – Properties of Definite Integrals
A company’s marginal revenue and marginal cost functions are as follows:
𝑹′ 𝒕 = πŸ•πŸ“π’†π’• βˆ’ πŸπ’•
𝑹 𝟎 = 𝟎,
π‘ͺβ€² 𝒕 = πŸ•πŸ“ βˆ’ πŸ‘π’•
π‘ͺ 𝟎 = 𝟎.
a) Find the total profit from the first 10 days.
b) Find the average daily profit from the first 10 days.
Reminder:
1
π΄π‘£π‘’π‘Ÿπ‘Žπ‘”π‘’ π‘‰π‘Žπ‘™π‘’π‘’ =
π‘βˆ’π‘Ž
𝑏
𝑓 π‘₯ 𝑑π‘₯
π‘Ž
1
π΄π‘£π‘’π‘Ÿπ‘Žπ‘”π‘’ π·π‘Žπ‘–π‘™π‘¦ π‘ƒπ‘Ÿπ‘œπ‘“π‘–π‘‘ =
π‘βˆ’π‘Ž
𝟏
b) π‘¨π’—π’†π’“π’‚π’ˆπ’†π‘«π’‚π’Šπ’π’š π‘·π’“π’π’‡π’Šπ’• =
𝟏𝟎 βˆ’ 𝟎
𝟏
=
𝟏𝟎
𝟏𝟎
𝟎
𝑏
𝑅′ 𝑑 βˆ’ 𝐢′(𝑑)
π‘Ž
𝟏𝟎
πŸ•πŸ“π’†π’• βˆ’ πŸπ’• βˆ’ (πŸ•πŸ“ βˆ’ πŸ‘π’•) 𝒅𝒕
𝟎
𝟐
𝟏
𝒕
πŸ•πŸ“π’†π’• + 𝒕 βˆ’ 75 𝒅𝒕 =
πŸ•πŸ“π’†π’• + + πŸ•πŸ“π’•
𝟏𝟎
𝟐
𝟏𝟎
𝟐
= $πŸπŸ”πŸ“, 𝟏𝟐𝟎. πŸ—πŸ—
Section 4.4 – Properties of Definite Integrals
Section 4.5 – Integration Techniques: Substitution
Differentiation Review:
π’š = πŸ“π’™ + πŸ”
π’…π’š = πŸ’ πŸ“π’™ + πŸ”
Integration:
π’…π’š =
πŸ“ 𝒅𝒙
𝟐𝟎 πŸ“π’™ + πŸ” πŸ‘ 𝒅𝒙
𝒖 𝒅𝒖 π‘Ίπ’–π’ƒπ’”π’•π’Šπ’•π’–π’•π’Šπ’π’: 𝒖 = π’ˆ(𝒙)
𝒅𝒖 = π’ˆβ€²(𝒙) 𝒅𝒙
Copyright  2010 Pearson Education, Inc.
πŸ‘
πŸ’
Section 4.5 – Integration Techniques: Substitution
π’…π’š =
Integration:
πŸ’π’™
πŸπ’™πŸ
𝟐
+ πŸ‘ 𝒅𝒙
𝒖 𝒅𝒖 π‘Ίπ’–π’ƒπ’”π’•π’Šπ’•π’–π’•π’Šπ’π’: 𝒖 = πŸπ’™πŸ + πŸ‘
𝒅𝒖 = πŸ’π’™ 𝒅𝒙
π’…π’š =
𝟐
πŸπ’™ + πŸ‘
𝟐
πŸ’π’™π’…π’™
π’–πŸ‘
π’š+𝒄=
+𝒄
πŸ‘
𝟏 πŸ‘
π’š= 𝒖 +π‘ͺ
πŸ‘
𝟏
π’š = (πŸπ’™πŸ + πŸ‘)πŸ‘ + π‘ͺ
πŸ‘
Copyright  2010 Pearson Education, Inc.
π’…π’š =
π’–πŸ 𝒅𝒖
Section 4.5 – Integration Techniques: Substitution
π’…π’š =
Integrate:
𝟐𝟎 πŸ“π’™ + πŸ” πŸ‘ 𝒅𝒙
𝒖 𝒅𝒖 π‘Ίπ’–π’ƒπ’”π’•π’Šπ’•π’–π’•π’Šπ’π’: 𝒖 = πŸ“π’™ + πŸ”
𝒅𝒖 = πŸ“ 𝒅𝒙
πŸ‘
π’…π’š = 𝟐𝟎
πŸ“π’™ + πŸ”
π’…π’š = 𝟐𝟎
𝟏
βˆ™ πŸ“ πŸ“π’™ + πŸ”
πŸ“
𝟏
π’…π’š = 𝟐𝟎 βˆ™
πŸ“
π’…π’š = πŸ’
Copyright  2010 Pearson Education, Inc.
𝒅𝒙
πŸ“ πŸ“π’™ + πŸ”
πŸ“π’™ + πŸ”
πŸ‘
πŸ“π’…π’™
π’…π’š = πŸ’
πŸ‘
πŸ‘
𝒅𝒙
π’–πŸ‘ 𝒅𝒖
π’–πŸ’
π’š+𝒄=πŸ’
+𝒄
πŸ’
π’š = π’–πŸ’ + π‘ͺ
𝒅𝒙
π’š = (πŸ“π’™ + πŸ”)πŸ’ +π‘ͺ
Section 4.5 – Integration Techniques: Substitution
Integrate:
𝒖 𝒅𝒖 π‘Ίπ’–π’ƒπ’”π’•π’Šπ’•π’–π’•π’Šπ’π’:
𝒆𝒙
𝒅𝒙
𝒙
𝟏+𝒆
π’…π’š =
𝒖 = 𝟏 + 𝒆𝒙
𝒅𝒖 = 𝒆𝒙 𝒅𝒙
π’…π’š =
𝟏
𝒙 𝒅𝒙
𝒆
𝟏 + 𝒆𝒙
π’…π’š =
𝟏
𝒅𝒖
𝒖
π’š = 𝒍𝒏 𝒖 + π‘ͺ
π’š = 𝒍𝒏 𝟏 + 𝒆𝒙 + π‘ͺ
Section 4.5 – Integration Techniques: Substitution
Integrate:
πŸ”π’™πŸ
π’…π’š =
πŸ‘ + πŸπ’™πŸ‘
𝒅𝒙
π’…π’š =
πŸ”π’™πŸ πŸ‘
𝟏
βˆ’
𝟐 𝒅𝒙
+ πŸπ’™πŸ‘
𝒖 𝒅𝒖 π‘Ίπ’–π’ƒπ’”π’•π’Šπ’•π’–π’•π’Šπ’π’: 𝒖 = πŸ‘ + πŸπ’™πŸ‘
𝒅𝒖 = πŸ”π’™πŸ 𝒅𝒙
π’…π’š =
πŸ‘+
𝟏
πŸ‘ βˆ’ 𝟐
πŸπ’™
π’…π’š =
𝟏
βˆ’πŸ
𝒖
𝒅𝒖
π’š=
𝟏
π’–πŸ
𝟏
𝟐
+𝒄
Copyright  2010 Pearson Education, Inc.
β†’ π’š=
πŸ”π’™πŸ 𝒅𝒙
𝟏
πŸπ’–πŸ
+π‘ͺ
β†’
π’š=𝟐 πŸ‘
𝟏
+ πŸπ’™πŸ‘ 𝟐
+π‘ͺ
Section 4.5 – Integration Techniques: Substitution
Integrate:
𝒖 𝒅𝒖 π‘Ίπ’–π’ƒπ’”π’•π’Šπ’•π’–π’•π’Šπ’π’:
𝒍𝒏 𝒙
𝒙
π’…π’š =
𝟐
𝒅𝒙
𝒖 = 𝒍𝒏𝒙
𝟏
𝒅𝒖 = 𝒅𝒙
𝒙
π’…π’š =
𝒍𝒏 𝒙
π’…π’š =
𝟐
𝟏
𝒅𝒙
𝒙
π’–πŸ 𝒅𝒖
π’–πŸ‘
π’š=
+𝒄
πŸ‘
𝟏
β†’ π’š = 𝒍𝒏𝒙
πŸ‘
πŸ‘
+𝒄
Section 4.5 – Integration Techniques: Substitution
Integrate:
π’…π’š =
πŸ‘
𝟐
πŸ’π’™
𝒙 𝒆 𝒅𝒙
𝒖 𝒅𝒖 π‘Ίπ’–π’ƒπ’”π’•π’Šπ’•π’–π’•π’Šπ’π’: 𝒖 = πŸ’π’™πŸ‘
𝒅𝒖 = πŸπŸπ’™πŸ 𝒅𝒙
π’…π’š =
𝟏
πŸ‘
𝟐
πŸ’π’™
βˆ™ πŸπŸπ’™ 𝒆
𝒅𝒙
𝟏𝟐
𝟏
π’…π’š =
𝟏𝟐
𝟏
π’…π’š =
𝟏𝟐
πŸ‘
𝟐
πŸ’π’™
πŸπŸπ’™ 𝒆
𝒆𝒖 𝒅𝒖
𝟏 𝒖
π’š=
𝒆 +π‘ͺ
𝟏𝟐
Copyright  2010 Pearson Education, Inc.
𝒅𝒙
β†’
𝟏 πŸ’π’™πŸ‘
π’š=
𝒆
+π‘ͺ
𝟏𝟐
Section 4.5 – Integration Techniques: Substitution
π’…π’š =
Integrate:
𝒖 𝒅𝒖 π‘Ίπ’–π’ƒπ’”π’•π’Šπ’•π’–π’•π’Šπ’π’:
𝒙
π’™βˆ’πŸ
πŸ‘
𝒅𝒙
𝒖=π’™βˆ’πŸ
𝒅𝒖 = 𝒅𝒙
π’…π’š =
π’…π’š =
π’…π’š =
π’…π’š =
𝒙
𝒅𝒖
πŸ‘
𝒖
𝒖+𝟏=𝒙
𝒖+𝟏
𝒅𝒖
πŸ‘
𝒖
𝒖
𝟏
+ πŸ‘ 𝒅𝒖
πŸ‘
𝒖
𝒖
π’–βˆ’πŸ + π’–βˆ’πŸ‘ 𝒅𝒖
π’–βˆ’πŸ π’–βˆ’πŸ
π’š=
+
+π‘ͺ
βˆ’πŸ
βˆ’πŸ
π’š=βˆ’ π’™βˆ’πŸ
βˆ’πŸ
𝟏
βˆ’ π’™βˆ’πŸ
𝟐
βˆ’πŸ
+π‘ͺ
Section 4.4 – Properties of Definite Integrals