A Dynamic Model for determining Inward Foreign Direct Investment in Jordan Ghaith N. Al-Eitana,* Foreign direct investment has become an increasingly important channel for developing countries to enhance their economic and financial systems. A significant part of economic and financial research is the view that a host country's risks affect investment inflows. The purpose of this paper is to test the argument that Jordan’s country risk, stock market price and macroeconomic variables determine inward FDI in Jordan. Models are formalised based on the theory of foreign direct investment and the missing gaps in the literature. This study covered the period from 1996 to 2010. Monthly data of collective country risk, macroeconomic variables and the price of stock market sectors were obtained from risk rating agencies, Central Bank of Jordan and the Jordan Securities Commission respectively. Moreover, the following methods are applied: Ordinary Least Squares (OLS) regression analysis (unlagged monthly data), Co-integration and exogeneity analysis based on multivariate models (lagged monthly data) such as vector autoregressive (VAR) and Granger Causality. ). Based on the analysis, the results showed that Jordan economic risk, the price of stock market sectors and two of the macroeconomic variables (inflation and GDP) significantly caused inward FDI in Jordan. Also, the variables appear to have a long run relationship. Some strategic implications have been drawn in conclusion for FDI attraction policy in Jordan. Keywords: foreign direct investment, stock market price, financial risk, economic risk, political risk, inflation, GDP, VAR a School of Economics and Finance, Curtin University, Perth, Western Australia, 6001, Australia. E-mail: [email protected] i PREFACE Thesis title: Modelling Inward Foreign Direct and Indirect Investment for Jordan and Australia (Policy Implications) Supervisor: Associated Professor John Simpson Previous studies have determined the effects of country risk, macroeconomic factors and globalisation on inward foreign direct and indirect investment (FDI and FII) in host economies. Some researchers study one or two countries risks like political and economic risk as well as including macroeconomic factors such as inflation and GDP to investigate their effects on (FDI and FII) in foreign countries. However, a few studies have analysed the relationship between FII, a country’s risk, macroeconomic factors and globalisation to determine the extent to which a country’s business environment influences FII in host country. For example, the assumption common to these studies is that a country’s risks affect FII negatively, some macroeconomic and globalisation factors positively and negatively affect FII. This means that conclusions have been mixed. Therefore, this study investigates the main determinants of inward FDI and FII in Jordan and Australia as developed economies in order to obtain some policy implications by using advanced econometric techniques such as vector autoregressive model, impulse response functions, variance decomposition, Granger causality, co-integration and error correction model. The thesis examines a number of key issues over the period 1996-2010 within the above context: firstly, investigating the true state of inward foreign direct and indirect investment in Jordan and Australia. Secondly, identifying the major determinants affect inward foreign direct and indirect investment in Jordan and Australia. .Thirdly, identifying the country's risk factors that influence inward foreign direct and indirect investment. Finally, analysing macroeconomic factors affect inward foreign direct and indirect investment. The thesis has been taken the following Structure: I. II. Chapter One: Introduction Chapter Two: Study Background III. Chapter Three: Theoretical Base and Literature Review IV. Chapter Four: Empirical Models and Hypothesises V. VI. VII. VIII. Chapter Five: Data and Methodology Chapter Six: Main Empirical Chapter Seven: Discussion Chapter Eight: Conclusion and Final Remark This paper based on advance econometric techniques (lagged models) such VAR, VECM, Co-integration, Granger causality ii 1. Introduction Foreign direct investment (FDI) is the most significant factor of economic growth, which encourages productivity of the national economy, augment’s the use of technology, reducing unemployment by creating new jobs and other encouraging output that differentiate this form of investment from other funding sources. Consequently, most developing countries realised the need for FDI to increase rates of economic growth. Despite the race among Arab economies to improve its business environment to pull foreign investment via contemporary legislations to attract this form of investment and increase the competitiveness of their national economy, most of these countries are still suffering from a low volume of inward FDI compared to other economies. This is due to the absence of efficient legislation that should support the process of attracting inward FDI. For example, impose higher taxes, the absence of political and economic stability in some countries and the existence of administrative and financial corruption. Like the rest of the world, foreign investment plays a vital economic role in Jordan and remains one of the main sources to enhance economic development. Therefore, the main aim of this paper is to investigate the dynamic movements of inward FDI in Jordan, country risk (financial, economic and political risk), macroeconomic factors (inflation, interest rate and GDP) and stock market price by implementing VAR, ECM, co-integration test and Granger causality test. Politically, Jordan’s foreign policies play a major role in making Jordan highly attractive for (FDI). For instance, in 1996, Jordan signed a peace agreement with Israel accompanied by Bill Clinton. As a result the Qualifying Industrial Zones (QIZ) was created by the U.S. Congress to support the peace process. In 1998, the United States Trade Representative (USTR) designated Jordan's Al-Hassan Industrial Estate in the northern city of Irbid as the world's first QIZ (CRS Report for Congress 2001, 2). Economically, Jordan is an open economy and has undertaken a program of economic reform covering most features of Public Finance Management. The three core objectives of the program of reform are to ensure fiscal sustainability, efficient resource allocation and operational efficiency. The economy has experienced sustained economic growth in recent 1 years due to a combination of strong economic policies nationally and spillover from regional growth, mainly by the rich Gulf economies. Annual real GDP growth doubled during 2000-05 from the earlier five years (Jordan Performance Report 2007, 8). The growth of Jordan’s Gross Domestic Product (GDP) was recorded at 7.6% percent and 2.9% percent respectively for the years 2008 and 2009, with a total contribution from Transport, storage and communication, manufacturing and the produce of government services sectors amounting to almost 16% percent, 17% percent and 18% percent for 2009 ( Treasury Jordan 2009, 36). The global financial crisis has affected Jordan’s GDP by 4.7%. However, Jordan economy is recovering from the effects of this. For example, Jordan’s GDP was estimated at 3.4% in 2010 and the International Monetary Fund (IMF) forecasted by 4.2% by 2011(Central Bank of Jordan 2010). The Jordan government has eliminated most fuel and agricultural subsidies, passed legislation targeting corruption, and begun tax reform. It has also worked to liberalize trade, joining the World Trade Organization (WTO) in 2000; signed an Association Agreement with the European Union (EU) in 2001; and also signed the first bilateral free trade agreement (FTA) between the U.S. and an Arab country, which entered into force in 2001. Jordan has established some economic regions and promotional institutions such as the Aqaba Special Economic Zone (ASEZ) and the Jordan Investment Board (JIB) in order to attract the foreign investors’ attention. First of all, ASEZ was inaugurated in 2001 as a bold economic initiative by the government of Jordan. A liberalized, low tax duty-free and multi–sector development zone, the ASEZ offers multiple investment opportunities in a strategic location on the Red Sea covering an area of 375 km² and encompassing the total Jordanian coastline (27 km), the sea-ports of Jordan and an international airport. Secondly, JIB was established in 1995. The Jordan Investment Board is a government institution committed to working with the private sector to promote Jordan for its unique, friendly business environment, diverse investment opportunities and attract foreign investments. Financially, the most important reason to attract foreign investors to the Amman financial market is there is a need to invest in portfolio diversifications on the basis of the principle of diversifications investment, which is part of the basic principles of investment policy. A foreign investor seeking markets does not have a connection with the advance markets, which are not affected by increasing and decreasing them. In addition, foreign investors search for companies or sectors that have prospects of a future boom. Moreover, 2 investors look for the markets which provide accurate and quick information in an appropriate time in order to control their investments (Amman financial market, 2009). Public shareholding companies were set up and their shares were traded in long before the setting up of the Jordanian securities market. In the early thirties the Jordanian public already subscribed to and traded in the shares. For example, Arab Bank was the first public shareholding company to be established in Jordan in 1930, followed by Jordan Tobacco and Cigarettes in 1931, Jordan Electric Power in 1938 and Jordan Cement Factories in 1951. In the 1975 and 1976, the Jordan Central Bank cooperated with the World Bank’s International Finance Corporation to establish the Amman financial market (Amman financial market, 2009). Jordan has done well in catching the attention of foreign investors as a consequence of numerous factors, such as internal and external political stability, supported investment legislations, privatisation plans, advanced private sectors, joining and merging with a variety of unilateral, bilateral and multilateral trade agreements. Moreover, foreign capital has been attracted by some factors such as the legal system, developed infrastructure, cheap and skilled labour, and feasible projects to be undertaken (Investment Encouragement Corporation, Amman, Jordan). The rest of the paper is organised as follows: section 2 describes the literature review and theoretical framework and hypotheses. Section 3 presents the research methodology including research models, the mechanism used to measure the extent of risk, data analysis method and methods of gathering data. Section 4 shows the results and discussion and section 5 conclusion. 2. Theoretical Framework and Review of Literature on FDI and Country Risk. Numerous studies have analysed the relationship between FDI, country risk, macroeconomic factors and stock market price to determine the extent, if any, to which country risk influences FDI in host economies. The assumption common to these studies is that country risk affects inward FDI. Overall, conclusions have been mixed, but most research find that country risk prevent FDI to flow into hot countries. The differences in the findings could arise from a number of methodological and conceptual factors such as lack of comprehensive, different definitions of FDI and different econometric specifications. 3 2.1Theoretical Framework The theory of FDI noted by Dunning 1977 that the structure market failure hypotheses of Hymer and Caves or the internalization approach of Buckley and Casson was very much couched. In that case, Dunning brought the computing theories together to build a new single theory. Dunning's new theory shaped via combining Hymer's ownership advantages with the internalization school meanwhile added a location dimension to the new theory. Also, he considers the impact of Country's and industry's characteristics on the ownership location and internalization advance of FDI (Dunning and Lundan 2008, 86). This paper has been focused on a host country’s characteristics. This is an interesting topic, as while virtually all countries now compete energetically for FDI inflows, the distribution of those inflows is far from uniform. While some countries pull in massive amounts of FDI inflows, but others such as those in developing countries lag far behind. Thus, it is vital for FDI-seeking policymakers to have a good grasp of the underlying drivers of the MNEs’ location decisions in order to attract inward FDI. According to Dunning's eclectic paradigm of FDI shows that a firm will directly invest in a foreign country if it ensures three conditions (Jones and Wren 2006, 36): An ownership-specific asset must be possessed by the firm, which gives it advantages over other firms. Secondly, these assets must be internalized within the firm. Finally, there must be a benefit in settingup production in a foreign country rather than relying on exports. In particular, this paper has been focused on a country’s risk which is closely related with the level of business risk. It seems intuitively plausible to believe that a sound institutional environment (efficient bureaucracy, low corruption, secure property rights, etc.) should attract more FDI. Similarly, higher business risk due to high country risk would discourage foreign investment by multinationals. Hence, there are several ways of characterizing a country's L specific advantages; one of them is ESP paradigm. According to economic environment, economic system and government policies, countries are classified in the ESP paradigm of Koopmans and Montias (1971). Here environment encompasses the resources and capabilities, including a wide range of intangible assets to a particular country as well as the ability of its enterprises to use these to service domestic or foreign markets. System means the macro-organizational mechanism within which the allocation of these resources and capabilities is decided. Policy means the strategic objective of government and the 4 macro or micro measures taken by them, to implement and advance these objectives within the system and environment of which they are part (Dunning and Lundan 2008, 223). 2.2 Literature Review and Hypotheses 2.2.1 Political risk Political risk is a type of risk faced by foreign investors, MNfs and governments. It is a risk that can be understood and managed via reasoned foresight and investment. Many studies have examined the determinants of FDI in a host country. Using different econometric techniques and periods, Harms and Ursrung (2000), Jensen (2003) and Busse (2004) point out that MNfs are more likely to be attracted to a democracy. Nevertheless, Egger and Winner explore the relationship between corruption and inward FDI by using general equilibrium models and data of 73 developed and less developed countries. They highlight a clear positive relationship between corruption and FDI which means corruption is a stimulus for FDI (2005, 935-949). The analysis comprises the primary data from 145 affiliates of western MNEs in Turkey via a survey by Demirbag et al, who find that political risk, financial incentives and culture distance do not have any significant impact on the perceived performance of affiliates (2007, 330). On the other hand, according to Busse and Hefeker political risks have a significant impact on FDI inflows (2007, 401). Institutional quality and democracy appear more important for FDI in services than general investment risk or political stability (Kolstad and Villanger 2008, 530). According to Cuervo-Cazurra, corruption, arbitrary corruption and pervasive corruption have a negative influence on FDI. However, transition economies show high levels of corruption and also high levels of FDI (2008, 25). Asiedu et al state that the optimal levels of FDI decrease as the risk of expropriation rises (2009, 269). Consequently, based on this overview of the related literature, the corollary hypothesis is as follows: H1a: There is a negative relationship between political risks and inward foreign direct investment. 2.2.2 Economic risk Economic risk could be manifested in assessing a country's economic strengths and weaknesses, which include real gross domestic product (GDP), growth, the annual inflation rate, and gross national product per head. The previous studies consider that economic risk as an important variable for foreign investors to make a decision about investment in a host 5 country. Alfaro et al study the various links among FDI, financial market and economic growth. The authors find that countries with well-developed financial markets gain significantly from FDI (2004, 108). Jinjarak studies FDI and macroeconomic risk for each US multinational industry via measuring vertical FDI share as a ratio of exports to a parent country relative to local sales by foreign affiliates. He finds that FDI activities of US multinationals in industries with a higher share of vertical FDI respond more disproportionately to negative effects of macro level demand, supply and sovereign risks (2007, 509-511). However, establishing an investment promotion agency is an effective way to attract FDI flows. This is achieved by collecting the IPA data via questionnaires from 68 countries where the Korean KTIPA maintains an overseas office and macro data from published sources and conducting a series of path analysis with maximum-likelihood estimation (Lim 2008, 44-50). Moreover, Speed and Kenisarin establish quantitative relationships between levels of FDI per capital to the year 2004, and three sorts of indicators relating, respectively to governance, economic freedom and corruption perception. Based on this, they highlight that the level of FDI in the Former Soviet Union states has been determined significantly via a planned economy moving towards a market economy(2008, 306). Azemar and Delios test the influence of corporate taxes on FDI in developing countries. They find a strong negative correlation between FDI and corporate tax rates (2008, 92). On the other hand, if the MNFs’ probability of taking part in the production process is reported as high then the MNfs pay a high level of tax (Karabay 2010, 222). Hence, after discussing the associated literature and theories, this leads to the following hypothesis: H2a: There is a negative relationship between economic risks and inward foreign direct investment. 2.2.3 Financial risk Financial risk is an umbrella term for any risk associated with any form of financing. Typically, in finance, risk is synonymous with downside risk and is intimately related to the shortfall or the difference between the actual return and the expected return. Estrin and Bevan employ data to determine FDI inflows from western countries, mainly in the European Union and in central Eastern Europe. They find that the host country risk proves not to be a significant determinant (2004, 785). On the other hand, Xing uses panel data covering Japanese direct investment in China's nine major manufacturing sectors from 1981 to 2002. This is in order to examine how FDI inflows from Japan were affected by the real 6 exchange rate between the Japanese Yen and Chinese Yuan. He suggests that the real exchange rate is one of the significant factors affecting Japanese FDI in China (2006, 207). What is more, Demmirbag et al use primary data from 145 affiliates of western MNfs in Turkey via a survey for the purpose of exploring the institutional incorporation of the host country and firm variable as determinants of the factors influencing perceptions of foreign affiliate performance. They find that financial incentives do not have any significant impact on the perceived performance of the affiliate (2007, 330). However, Tomlin uses the implications of the model of investment under uncertainty to examine the relationship between exchange rates and FDI in 207 U.S industries. He states that dollar appreciations are positively correlated with service FDI flows into the U.S (2008, 537). Additionally, Alfaro et al formalize a mechanism that emphasizes the role of the local financial market in enabling FDI to promote growth through linkages. They conclude that there is an increase in the share of high level growth in financially developed economies by using realistic parameter value (2010, 248). Nevertheless, Arratibel et al highlight that a negative effect of exchange rate volatility on FDI stock and negative relation between exchange rate volatility and FDI is even more negative for more open economies (2010, 11). Thus, after reviewing the related literature, the hypothesis is as follows: H3a: There is a negative relationship between financial risks and inward foreign direct investment. 2.2.4 Stock Market Price De Santis et al. (2004) and Klein et al. (2002) test stock market valuations as a determinant of aggregate and firm-level FDI, respectively, but use these valuations as proxy for traditional FDI determinants – in particular intangible assets – or do not control for traditional FDI determinants, and therefore do not test for a strict finance-FDI effect in the sense of Baker et al (2009). Baker et al note that relative wealth shocks of the type that results from exchange rate changes in Froot and Stein (1991) may also originate in stock market price misalignments. They discuss the possibility of an effect on FDI through a ‘cheap finance’ channel (source-country overvaluation) or a ‘cheap assets’ channel (targetcountry undervaluation5), and find strong evidence in favour of a ‘cheap finance’ effect on annual aggregate US FDI flows over the 1974–2001 period. H5a: There is a positive relationship between stock market price and inward foreign direct investment. 7 2.2.4 Gross Domestic Product GDP is the market value of all final goods and services produced within an economy in a given period of time. Several studies have shown that the importance of GDP in attracting FDI. For example, Bitzenis et al highlights that the economic variables such as GDP is considered as first order in determining FDI (2007, 693; Caves, 2007; Dunning and Lundan, 2008). In addition, Asiedu points out that the size of a country’s market as measured by GDP is a key determinant of FDI inflows (2006, 73). Blonigen et al conduct a general examination of spatial interaction in empirical FDI models using data on US outbound FDI activity. As a result, they state that the traditional determinant of FDI such a host country’s GDP has a strong positive and significant coefficient FDI (2007, 1314). Consequently, based on this overview of the related literature, the hypothesis has been formulated as follows: H5a: There is a positive relationship between Gross Domestic Product and inward foreign direct investment. 2.2.5 Inflation The inflation rate means that the general level of price for goods and services is rising and subsequently purchasing power is falling. The Inflation rate is frequently used as an indicator of macroeconomic instability reflecting the presence of internal economic tension of the inability or unwillingness of government. Therefore, Central banks attempt to stop severe inflation, along with severe deflation, in an attempt to keep the excessive growth of prices to a minimum (Mankiw 2007, 76-85). Rammal and Zurbruegg examine the determinants of FDI for five Asian economies namely: Indonesia, Malaysia, Philippines, Singapore and Thailand, by using a panel data set containing information on FDI flows from home to host countries. As a result, the negative relationship shows that an increase in the inflation rate lessens FDI in that country (2006, 409). However, Trevino et al investigate the process of institutionalization and legitimization in countries in Latin America and its impact on organizational decision-making regarding inward foreign direct investment (FDI).They highlight that control variable inflation insignificant support that lower inflation leads to greater levels of FDI. H6a:The level of inflation in the host country is negatively associated with its level of inward FDI. 8 Research Methodology and Empirical Analysis 3.1 Variables The main variables used to explain the drives of foreign direct investment inflows to Jordan are country risk ( finance, economic and political risk), macroeconomic factors (inflation, gross domestic products GDP and interest rate) and stock market price of following sectors (banks, services, industries and general sectors). 3.1.1 International Country Risk Guide ICRG gathers monthly data on a variety of financial, economic and political risk variables to calculate risk indexes in each of these categories. For instance, five financial, six economic and 13 political factors are used. Each factor is assigned a numerical rating within a specified range. The specified allowable range for each factor reflects the weight attributed to that factor. As high score indicates low risk. The Financial Risk on 50 points, Economic Risk on 50 points and Political Risk index is based on 100 points. First of all, the financial risk’s aim is to provide a means of assessing a country’s ability to pay its way. In essence, this needs a system of quantifying a country’s ability to finance its official, commercial, and trade debt obligations. Secondly, the economic risk is aimed at assessing a country’s current economic strengths and weaknesses. In general, if its strengths outweigh its weaknesses, it will present a low economic risk and if its weaknesses outweigh its strengths, it will present a high economic risk. Finally, the political risk is purposed to deliver a means of assessing the political stability of the countries covered by ICRG on a comparable basis. This is done by assigning risk points to a pre-set group of factors, termed political risk components. 3.1.2 Stock Market Price Stock prices shed light on the connection with FDI. Host country stock market valuations contain relatively more information about the marginal productivity of FDI, while source country valuations are likely to be more relevant to a foreign investor’s cost of capital. Thus, price of different stock market sectors are used including stock mark price of Jordanian bank, services, industries and general sectors. 9 3.1.3 Macroeconomic Variables To improve the empirical analysis, three macroeconomic variables are considered: GDP, inflation and interest rate. There several studies have used GDP as control variable in determining inward FDI in a host economy such as (2007, 693; Caves, 2007; Dunning and Lundan, 2008) interest rate and as well as inflation for example, (Rammal and Zurbruegg 2006; Mankiw 2007). Table 2 lists these variables and identifies the sources of data for each. 3.2 Methods of Gathering Data Monthly data for collective financial, economic and political risk are obtained from the International Country Risk Guide (ICRG)2. As for foreign direct investment inflows to Jordan, GDP, (GDP data are converted to monthly) and inflation data are collected from the Central Bank of Jordan (CBJ). The sample covered period of time from 1996 to 2010. According to the definition of the International Foreign Direct Investment Bank (IFDIB), the percentage is the net flow of investments directed to obtain constant returns of (10%) or more of shares with voting power at organizations functioning in a foreign economy to the investor. This variable is share capital, reinvested returns; long and short term capital shown in the payables balance, and this series, according to (IFDIB) indicates the net flow of investments in the country. Third: Data Analysis Methods The current paper investigates the behaviour of inward foreign direct investment in Jordan by illustrating the effects of country risk (financial, economic and political risk), the price of different stock market sectors (banks, services, industries and general sectors) and macroeconomic factors such as inflation, interest rate and GDP. As the data are gathered, it was entered into Eviews-7 program in order to analyse and apply different statistical methods. In the first stage, OLS, diagnostic tests (serial correlation, heteroskedasticity white test, unit root test ADF) are implemented to analyse the unlagged model. In the second stage, vector autoregressive model (VAR), co-integration test, Granger causality 2 Country risk rating consists of three variables: firstly, political risk provides a mean of assessing the political stability of the countries including government stability, corruption, and democratic accountability …exe. Secondly, economic risk provides a means of assessing a country’s current economic strengths and weaknesses including GDP per head, real GDP and annual inflation rate …exe. Thirdly, financial risk provides a means of assessing a country’s ability to pay its way which means the country’s ability to finance its official, commercial and trade debt obligations …exe. 10 and error correction model (ECM) are applied to explain the dynamic movement of the variables in the lagged system. The quarterly GDP time series data are converted into monthly using Chow and Lin (1971 372-375) procedure. The idea is that the GDP is observable at the quarterly frequency, but the indicators used the indicators employed to disaggregate it are observable at a highest frequency, the data are available on a monthly basis, and are potentially informative variables. In order to illustrate the method, and is monthly values of one of the GDP components n are set of variables available monthly and contain information about . ( ) Where coefficient [ ( ). The monthly error term is ( )with unknown serial correlation and V is the error covariance matrix formulated as follows: ] ( ) Taking quarterly averages of equation number (4.50) to obtain the following equation: ( ) or y.=X.β+μ. Where is the matrix that converts monthly observations to quarterly averages, ( ) where a dot subscript is a quarterly average. ( ) is the quarterly error covariance matrix. Finally, the estimated monthly values for the GDP component ̂ are computed by Chow-Lin’s formula as follows: ̂ ̂ ( ̂ ) ̂ 11 Table 1: Description and Sources of Data Variable Sub-variables Description Source of Data FDI NP* Inward Foreign Direct Investment Central Bank of Jordan (FR) Jordan Financial Risk International Country Risk Guide (ER) Jordan Economic Risk International Country Risk Guide (PR) Jordan Political Risk International Country Risk Guide (BS) banks Stock Market Valuation Amman Stock Exchange (SS) Services Stock Market Valuation Amman Stock Exchange (IS) Industries Stock Market Valuation Amman Stock Exchange (GS) General Stock Market Valuation Amman Stock Exchange (GDP) Jordan Gross Domestic Products Central Bank of Jordan (INF) Jordan Inflation Rate Central Bank of Jordan (INT) Jordan Interest Rate Central Bank of Jordan Country Risk Stock Market Price Macroeconomic Factors *: Not applicable 12 3 Model Specifications 3.3.1 Unlagged Model Specification The empirical literature on the determinants of foreign direct investment inflows to developing countries has generally focused on identifying the location specific factors and relevant government policies that influence FDI and use models that do not have strong macro-foundations and all country risk variables and all country risk variables (financial, economic and political risk) such as (Alfaro et al 2004; Lim 2008; Asiedu et al 2009; Alfaro et al 2010; and Karabay 2010; are examples of such studies). The specification of the equation and choice of variables are inspired by the extensive empirical literature and theories on FDI. In order to study the impact of country risk on foreign direct investment inflows to Jordan there are two stages. The first stage involves a general form (unlagged mode), the model is specified as follows: ( ) ( ( ) ) ( ) Where ( ) ) ( ( ) ) ( ( ) ) ( ) ( ) represents the inward foreign direct investment in Jordan, the country risks variables is as follows: and ( stands for Jordan financial risk; means Jordan economic risk represents Jordan political risk. The stock market price variables are namely: where refers to banks stock market price, for industries stock market price and represents services stock market price, means stock market price of general sectors. Finally, the macroeconomic factors as follows: where products, stand is measured the inflation rate in Jordan and is Jordan gross domestic is the interest rate in Jordan market All variables in the above model have been selected on the basis of how frequently they were cited in previous applied studies and how important (significant) were in determining inward foreign direct investment. Country risks such as financial, economic and political risk are included in the model as several studies have found connection between inward foreign direct investments in host economies. For example, Xing (2006, 2007) highlights that the real exchange rate risks as one of the significant factors affecting Japanese FDI in China. , Busse and Hefeker (2007, 401) found that the political risks have significant impact on foreign direct investment 13 inflows. Kaisaris and Speed (2008, 309) point out that the level of FDI in the FSU states is determined significant via a planned economy towards and a market economy. Awokuse and Yin (2010, 222) indicate that the strengthening of intellectual property right (IPR) protection in China has a positive and significant effect on FDI. Thus, it could be argued that the country’s risk variables have a negative influence on inward FDI. The model also includes the price of stock market sectors such as banks, services, industries and general sectors. There are many researchers who have used stock market valuations as determinants of inward FDI in host countries. For instance, Froot and Stein 1991; De Santis et al 2004and Baker et al 2009) Some of macroeconomic factors are introduced to the model such as inflation, interest rate and GDP, in order to improve the empirical analyses. Inflation and interest rate are frequently used as indicator of macroeconomic instability. A high rate of inflation and interest ( ) is a sign of internal economic tension and of the inability of the government and central bank to balance the budget and to restrict money supply. As a rule, the higher the rate of inflation and interest, the less foreign direct investment inflow to host countries. Gross Domestic Products (GDP) is included in the model as control variable in determining inward FDI in Jordan, (2007, 693; Caves, 2007; Dunning and Lundan, 2008). Also, inward FDI is expected to be positively related to this control variable, (Asiedu 2006; Blonigen et al 2007). An important consideration to be made in relation to estimating the unlagged model is to do with the existence of spurious regression. Results of Augment Dickey-Fuller test (see table 3) indicate that the variables should be estimated using the log first differences. The final version of the unlagged model has the following form: ( ) ( ) ( ( ( Where: ) ) ( ( ) ) ( ) ( ( ) ) ( ( ) ) ) denotes the first differences of natural logarithm. The possible existence of heteroskedasticity is a major concern in the application of ordinary least squares (OLS) analysis, including the analysis of variance, because the presence of heteroskedasticity can invalidate statistical tests of significance that assume that the modelling errors are 14 uncorrelated and normally distributed and that their variances do not vary with the effects being modelled. Therefore, the White test was applied to detect whether the errors are heteroskedasticity or homoskedasticity ( ) ( Where The ARCH (1) model indicates that when a big shock happens in period more likely that the value of will be bigger as well. This is, when the variance of the next error term , it is is large or small, is also large or small. The estimated coefficient of has to be positive for positive variance. The ARCH model implanted in E-view in the mean and variance equations where stated above respectively. The results of ARCH show that the model is stable. 3.3.2 Lagged Model Specification In the second stage the lagged model is introduced to explore the dynamic behaviour of Jordanian country risk (financial, economic and political risk), stock market price (banking, industry, services and general sectors) and macroeconomic factors (inflation, interest rate and GDP). Testing for long and short run relationships the following dynamic methods are implemented: firstly, vector autoregressive (VAR) model, Granger causality, Johansen’s Co-integration test and Error Correction Model. 3.3.2.1 Vector Autoregressive model VAR model has the advantage of treating each variable under the study as an endogenous variable when economic theory cannot offer a priori information regarding the variables used in the VAR. This makes VAR estimation simple and OLS estimation method can be used provided all variables included in the VAR are integrated of the same order Gujarati (1995 749). In this case, the time series is affected by current and past values of simultaneously, as well as the time series is a series affected by current and past values of the , series. Therefore, the following simple bivariate VAR model is considered (Brooks 2008 290, 291) ( ) ( ) 15 Where and are stationary and and are uncorrelated white-noise error terms. These equations constitute a first order of VAR model as the longest lag length is unity. Hence, equations (7) and (8) are not reduced form since the contemporaneous effect on and gives a contemporaneous effect on gives a . 3.3.2.2 Lag Order Selection Criteria for Vector Autoregressive Model The selection criteria for the appropriate lag length are used to avoid over parameterising the model and produce a parsimonious model. The Bayesian Schwartz (BSC), The HannanQuinn Criterion (HQ) and the Akaike Information Criterion (AIC) are often used as alternative criterion. They rely on information similar to the Chi-Squared test and are derived as follows (see table 5): ( ) ( ̂) ( ) ( ̂) ( ) ( ) ( ̂) ( ( )) 3.3.2.3 Error Correction Model and Co-integration Clearly, a good time series modelling should define both short-run dynamic movements and the long-run equilibrium simultaneously. For this purpose, the error correction model is introduced in this study. The error correction model is a dynamical system with the characteristics that the deviation of the current state from its long-run relationship will be fed into its short-run dynamics. The error correction model can be used to conduct the short effect of the endogenous variables on the exogenous variables and as wall as the speed adjustment at which the exogenous variable return to equilibrium after a deviation has occurred. There are two different ways to conduct the co-integration test. Engle and Granger (1987) based on single equation and Johansen (1998) based on systems of equation. Engle and Granger test the stationary of residual based on single-equation static regression of one variable. Therefore, Johansen estimation technique is better in the sense that it uses maximum likelihood of a full system that provides test of Max-Eigen and Trace statistics (shown in equations 7 and 8 respectively) to determine the number of co-integrating vectors. Therefore, in this paper the Johansen and Jesulius estimation technique has been applied in order to determine the co-integration and the number of co-integrating vectors. 16 ( ) ( ) ( ) ( Where ∑ ) ( ̂) ( ̂ is the sample size, ) is the number of co-integrating vectors under the null hypothesis and ̂ is the estimated value for the row of matrix ordered eigenvalue from the matrix. Thus, a significantly non-zero eigenvalue indicates a significant co-integrating vector. 4. Empirical Analyses The aims of this paper are that: to identify the major determinants of foreign direct and indirect investment, to analyse macroeconomic factors influencing inward foreign direct investment and to identify the country's risks factors that have an effect on foreign direct and indirect investment flows. 4.1 Descriptive Statistics The descriptive statistics shown in table (2, a) reveal that the average inward foreign direct investment (FDI) in Jordan is about 41with a sample range of almost 0.67 and 330.167 maximum. This implies that Jordan receives a good amount of inward FDI. According to World Investment Report in 2010 Jordan has been ranked 14th regarding inward FDI performance among Middle East countries. For instance, Saudi Arabia, Qatar and Lebanon have been levelled 17th, 13th and 6th respectively. The country risks play a major role in attracting foreign direct investment to inflow a host country. The three major variables of Jordan country risk explain also the reasonable amount of inward FDI in Jordan. The median of Jordan financial, economic and political risk are (38, 36, and 71.5) respectively, this shows that Jordan has sensible business environment to attract foreign investors. Table (3, b) presents the stock market price sectors and macroeconomic variables descriptive statistics. The standard deviations of stock market price sectors (banks, services, industries and general sectors) are more than the mean. This indicates a good variance. Table 2, b indicates the range price of the stock market price in Amman Stock Exchange 17 Table 2, a: Descriptive Statistics of Foreign Direct Investment and Country Risk Descriptive Statistics FDI Financial Risk Economic Risk Political Risk 73.71902 38.06111 35.62556 71.14722 41 38 36 71.5 Maximum 330.167 42 40 74 Minimum 0.66667 36.5 24.5 66.5 Std. Dev. 77.58222 1.426657 4.181605 1.746263 Skewness 1.226474 1.06577 -1.74138 -0.46582 Kurtosis 3.793871 3.822879 4.920728 2.179005 Mean Median Table 2, b: Descriptive Statistics of Stock Market Price and Macroeconomic Variables Descriptive Statistics Banking Services Industries General GDP Inflation Interest Rate Mean 5229.854 1125.929 1829.334 2914.147 771.7389 94.60444 10.04372 Median 316.5756 118.5533 135.9339 209.512 599.783 88.65 9.385 Maximum 18963.12 3801.511 11032.49 10490.8 1702.82 128.7 13.04 Minimum 170.5687 98.3537 71.29547 132.6499 372.5 75.2 7.42 Std. Dev. 5818.578 1184.276 2251.261 3183.196 375.2218 14.99955 1.649419 Skewness 0.56062 0.588648 1.398183 0.542872 1.055012 0.874888 0.237631 Kurtosis 1.749135 1.851636 5.108951 1.769236 2.867063 2.400902 1.679963 18 4.2 Unit Root Test The Augmented Dickey –Fuller test (ADF) is employed to test the data in the levels and log first differences wether the variables are stationary or no-stationary. Table 3: Summery Statistics of Unit Root Test Variables t- Statistics in Levels t-statistics in Log First Differences FDI -2.434251 -10.82526*** Financial Risk -1.710746 -13.77530*** Economic Risk -1.836278 -13.30841*** Political Risk -2.080084 -14.40819*** Banks Stock Market Price -0.950598 -11.70533*** Services Stock Market Price -1.034862 -11.63246*** Industries Stock Market Price -1.922609 -6.887888*** Stock Market Price of General Sectors -1.050766 -10.61605*** GDP 1.992962 -3.214103** Inflation 1.375250 -10.86555*** Interest Rate -0.572853 -18.46510*** ***,** indicate statistical significant at 1%, 10% level respectively Table 3 illustrates that the result of ADF test in levels and first differences. The results of t-statistics in levels series indicate that the data are non-stationary. In order to avoid the problem of spurious regression analysis and significant regression result from unrelated data it has been taken the first difference for the data to become the data stationary, t-statistics in first differences show stationary data. Therefore, the problems of non-stationary data are solved, then and can be concluded that the data are I(1) processes the model can be estimated for co-integration. 19 4.3 Unlagged Model The results of OLS regression in levels show that Jordan economic risk has significant impact on inward FDI in Jordan. Also, the stock market sectors price (banks, services, industries and general sectors) have significant influence on inward FDI in Jordan. Moreover, interest rate is significantly determining inward FDI. However, the D.W test indicates a serial correlation problem and white test indicates a heteroskedasticity problem. In order to solve these problems, the unlagged model is specified in log first differences to remove the serial correlation and non-stationary in order to obtain robust results of OLS regression. The Durbin Watson test (2.060448) shows that the model does not have a serial correlation problem, but there is no significant impact of the country risk on inward FDI. The null hypothesis of the diagnostic white test is rejected which indicates that the model suffers from Heteroskedasticity. Therefore, ML-ARCH model is applied to solve the problem of heteroskedasticity. According to GARCH result in table (4) the model is stable. The results in table (4) provide the first evidence that stock market price play an important role in FDI patterns in Jordan. The coefficient of banking, services and industry stock market price sectors are negatively significant. This indicates that a cheap assets channel for foreign investors. However, the coefficient of general stock market price sector is significantly positive which consider as a cheap capital channel. Therefore, this adds a new dimension to the FDI literature The inflation is negatively significant affect inward FDI and this is consistent with Rammal and zurbruegg (2006, 409) show a negative relationship between annual inflation rate and FDI. This means that an increase in the inflation rate lessens FDI in the host country. This is consistent with Hasen and Gianlulgi (2007, 23) findings. They study the determinants of FDI inflows to Arab Maghreb Union (AMU) countries. They highlight that the annual inflation rate has a negative effects and significant which explain why Maghreb countries attract FDI less than other countries at a similar stage of development. Tevino et al (2008, 131) find insignificant direction that a lower level of inflation rate in host Latin American economies leads to greater level of FDI. Asiedu and Lien (2011, 104) indicate that a less inflation attract more foreign investors and promote FDI. . 20 Table 4: Summery Statistics of the Unlagged Model Results Independent Coefficient t-Statistic z-Statistic (Ml-ARCH) Diagnostics Test D(FR) 0.42671 0.085711 3.558430*** Durbin-Watson Stat (2.060448) D(ER) 0.809387 0.401469 1.397760 D(PR) -0.4667 -0.12343 2.233652* D(BS) -0.18892** -2.42733** -21.38985*** D(SS) -0.33693*** -2.96961*** -19.91513*** Serial Correlation D(IS) -0.21832** -2.53558** -17.27124*** LM test *R-squared (0.220649) D(GS) 0.620441** 2.600391** 21.49498*** D(INF) -6.487274** -2.438774** 0.630178 D(INT) -13.2095 -1.09285 0.097132 Variance Equation ( ML-ARCH) D(GDP) 0.066 1.102694 2.750441** GARCH(-1) (0.725844)*** Variable ***,** indicate statistical significant at 1%, 10% level respectively 21 F-Statistic (2.647082)*** 4.4 Lagged Model In this study dynamic models are introduced such as vector autoregressive model (VAR), Granger causality, error correction model (ECM) and co-integration test. In order to shed the light on the interaction and dynamic movements of inward foreign direct investment in Jordan, country risk (financial, economic and political risk), stock market price( banking, services, industry and general sectors) and macroeconomic factors (inflation, interest rate and GDP). Table 5: Vector Autoregressive Lag Length Order Selection Criteria Lag LogL LR FPE AIC SC HQ 0 -8836.62 NA 4.88E+30 104.7173 104.9396 104.8075 1 -6928.6 3522.496 4.20E+21 83.84138 86.73052* 85.01385 2 -6800.11 218.96 5.17E+21 84.02497 89.581 86.27971 3 -6640.5 249.327 4.56E+21 83.84027 92.0632 87.17729 4 -6482.6 224.236 4.36E+21 83.67578 94.5656 88.09507 5 -6268.96 273.0611 2.34E+21 82.85158 96.4083 88.35315 6 -6084.36 209.7221 1.99E+21 82.37111 98.59473 88.95496 7 -5869.77 213.3195 1.40E+21 81.53574 100.4262 89.20186 8 -5664.7 174.737 1.36E+21 80.81298 102.3704 89.56138 9 -5357.01 218.4786 5.42E+20 78.87581 103.1001 88.70649 10 -4927.33 244.0774 8.10E+19 75.495 102.3862 86.40796 11 -4515.16 175.5975* 3.17e+19* 72.32144* 101.8795 84.31667* *Indicates lag order selected by the criterion. LR: sequential modified LR test statistic (each test at 5% level), FPE: Final prediction error, AIC: Akaike information criterion, SC: Schwarz information criterion, HQ: Hannan-Quinn information criterion 22 Table (5) presents results of VAR lag order selection criteria for three tests. The maximum possible lag length considered was eleven (months). The first column provides the lag length for each test and the last three columns of the table illustrate the test statistics. In this case the choice is ambiguous, because the reveal only one lag is needed by the SC, eleven lags with the AIC and HQ. Further examination found serial correlation at one lag. Therefore, the eleven lags length of VAR have been selected by AIC and HQ information criterion, since they are not serially correlated. Having confirmed the existence of unit roots for all the data series (see table 3). The next step is to check the existence of long-run relationship among the variables. The estimated results of Johansen co-integration test are reported in table (6). Since calculated λmax (405.585) and Trace (1694.175) are above the critical values (70.53513) and (285.1425) respectively at 1 percent, it can be clearly rejected the null hypothesis stating there is no cointegration. Moreover, the second null hypothesis stating two versus three co-integrating vectors, it also can be rejected the null hypothesis since calculated λmax (336.8631) and Trace (1288.59) are above the critical values (64.50472) and (239.2354) respectively. Thus, it could be seen from the table 6 that Johansen Co-integration analyses based on unrestricted VAR results indicate 11 co-integrating equations in the system. That means the results confirmed that foreign direct investment and its determinants, share a long run equilibrium relationship in Jordan. This indicates that there is possibility of causality between inward foreign direct investment in Jordan, country risk, macroeconomic factors and stock market price. Therefore, Error Correction Model (ECM) is implemented to investigate the direct of causality between inward FDI and its determinants. 23 Table 6: Johansen Co-integration Analysis, Unrestricted Co-integration Rank of Trace and Max-Eigen Test (VAR Lag=11) Max-Eigen 0.05 Critical Statistics Value 334.9837 569.2128*** 76.57843 1694.175*** 285.1425 405.585*** 70.53513 0.865358 1288.59*** 239.2354 336.8631*** 64.50472 At most 3 * 0.810217 951.7268*** 197.3709 279.1944*** 58.43354 At most 4 * 0.605425 672.5324*** 159.5297 156.2311*** 52.36261 At most 5 * 0.564063 516.3013*** 125.6154 139.4833*** 46.23142 At most 6 * 0.524498 376.8179*** 95.75366 124.8885*** 40.07757 At most 7 * 0.491871 251.9294*** 69.81889 113.7393*** 33.87687 At most 8 * 0.331241 138.1902*** 47.85613 67.59171*** 27.58434 At most 9 * 0.191416 70.59847*** 29.79707 35.69512*** 21.13162 At most 10 * 0.109291 34.90335*** 15.49471 19.44397*** 14.2646 At most 11 * 0.087913 15.45938*** 3.841466 15.45938*** 3.841466 Hypothesized No of CE(s) Eigenvalue Trace Statistic 0.05 Critical Value None * 0.96623 2263.388 At most 1 * 0.910561 At most 2 * Trace test indicates 11 co-integrating equations at the 0.05 level *denotes rejection of the hypothesis at 0.05 level **Mackinnon-Haug-Michelis (1999) p-value, (*** indicates significant at 1%) 24 Table (7) presents the Granger causality tests for this 11 variables model. Each of the 11 variables appears to have explanatory power for one or more of the other variable in the system. The effects are direct, but often complex and indirect. In the first equation, inward FDI in Jordan appears to be significantly influenced by economic risk, the price of stock market sectors (banks, services, industries and general sectors), inflation rate and GDP. However, economic risk, stock market price of services and industry sectors, inflation rate, GDP appear to have strong revers Granger causality on inward FDI in Jordan. The results in table (7) are consistent with the following studies. Tekin (2012, 873) investigates potential Granger causality among GDP and foreign direct investment least developed countries for the period between 1970 and 2009 using panel data. Tekin reports that GDP Granger causing FDI in Burkina Faso, Gambia, Madagascar and Malawi. Hansem and Rand (2006 ) test for Granger causality between FDI and GDP in a sample of 31 developing countries finding that FDI has a positive impact on GDP in long run. GurnGharana and Adhikari (2011, 42) state that Granger GDP causality towards FDI get very strong support at 1% significant level. Also, Feridun and Sissoko (2011, 13) examine the relationship between GDP and FDI for Singapore. They find that causality running from FDI to GDP. The third equation inward FDI and financial risk have effects on economic risk at 10%, but the stock market price appears to have a significant impact on economic risk at 1%. The services stock market price sector is explained by inward FDI, banks, industries and general sector at 10% and 5% respectively. Inward FDI, economic risk, banks, services, general and GDP affect the behaviour of the industries stock market price at 5%. The stock market price sectors affect inflation at 10%, but the inward FDI, economic and financial risk at 5% and 1% respectively. Inward FDI, economic, industries stock market price, inflation, interest rate, GDP appears to be explained by the movement of all variables at 1%. The error correction model is applied to capture the short run dynamic of this model. Table 8 (part a and part b) illustrate the results of error correction model (ECM). Only one error correction term is included even there are more than one co-integrating vectors as suggested by Johansen’s multivariate tests because this study investigate the inward foreign direct investment in Jordan rather than of other equations from the variables (i.e country risk, 25 inflation, interest rate, GDP and so on). More precisely, financial risk has negative effect on inward FDI and political risk significantly influences inward FDI with negative sign, but the economic risk has a significant positive sign in determining inward FDI. This seems to indicate that foreign investors would continue investing in Jordan although economic risk perceptions have worsened in the short-run. Nevertheless, this empirical observation does not encourage economic risk, but to highlight the short-run responses of inward FDI to Jordan’s economic risk. In the long run, the economic risk has negative impacts on the inward FDI in Jordan. It can be explained by Uctum and Uctum (2011, 475) study that economic risk reduces the inflow of FDI. Services, industry and general stock market price sectors affect inward FDI negatively, but the banking stock market positively influences Inward FDI and statistically insignificant. In the short-run high interest rate attracts more inward FDI. This shows that foreign investors would remain investing in Jordan. It can be explained by Farrell et al (200, 17); Pan (2003, 832); Tolentino (2010, 114) and Uctum and Uctum (2011, 466) who report that interest rate increase the inflow of FDI to host country. However, high interest rate would discourage the inflow of FDI in the long-run as it considers high borrowing cost. This conclusion supports Cuyvers et al (2011, 255) study the effects of interest rate on inward FDI in a developing economy such as Cambodia. Cuyvers et al point out that a negative nexus between interest rate and the level of inward FDI in a host country. Also, Wei and Liu findings (2001); they indicate economic linkages between FDI and cost of borrowing. This specifies that a lower cost of borrowing in the home country than in host country gives the home country firms a cost advantage over their rivals in the host economy. The significance of the error correction terms of these ECMs further reveals the following interpretations. Firstly, it confirms the presence of a long –run equilibrium relationship among the inward FDI and its determinants. Secondly, Jordan country risks, macroeconomic factors and stock market price do jointly Granger causes the level of inward FDI in Jordan. Finally, the estimated coefficient of error correction term indicate the speed of adjustment among the variables towards long run equilibrium take 2 years to 2.5 years (58 months) approximately to return to equilibrium. 26 Table7: Vector Autoregressive (VAR) Granger Causality/ Block Exogeneity Wald Test Equations FDI FR ER FDI 21.35447* FR 20.75454* ER PR BS SS IS 22.92724* 25.2104** GS INF INT 29.84367** GDP 39.17632*** 24.30078* 19.93121* 27.27689** 26.3925** 19.97094* 20.22188** 28.55694** 23.27832* 25.60021** 23.4917* 26.55821** 29.21642** PR BS 34.61184*** 43.15024*** SS 34.52445*** 30.65587** IS 35.52189*** 57.01017*** 18.648** 23.83057* 23.53805* GS 34.40376*** 42.53835*** 19.38172** 28.65669** 23.55297* 24.77008** INF 18.46742* 19.13671* 28.45206** 23.60268* 19.72975* 20.73333* INT GDP 17.58099* Joint 405.9396*** 141.0835 681.7122*** 90.45212 27.92124** 26.89246** 25.57754** 127.8285 125.1251 52.80833*** 301.3650*** 127.4321 280.6545*** 179.0602*** 456.8541*** The Chi-square tests are reported in each cell with their associated p-value. Significant at 10% (*), 5% (**) and 1% (***) 27 Table 8 (part: a): Estimates of the ECM and VAR for Inward Foreign Direct Investment in Short and Long Run Variables FR Equation ER Equation PR Equation BS Coefficient SS Equation Short-run Long-run Short-run Long-run Short-run Long-run Short-run Long-run Short-run Long-run FDI -0.58428 -4.17685 499.1209*** -10.29361 -344.719*** -31.851** 39.89018 3.632974* -2.34232 6.082111* FR 0.002759* 0.133002 -0.84103*** 0.044799 0.351183 0.06692 0.471769*** -0.00463 -0.00455 ER -0.00444*** 0.176497 0.142864 -0.15495 -0.93659*** -0.12032 -0.23753 -0.00869* -0.01682* -0.0096 PR -0.00075 -0.20117 0.157733 -0.10803 -0.1715 -0.06593 -0.58922*** 0.004554 -0.01059 0.007012 BS 0.633813 -68.4023 -254.991* -26.1562 0.335842 -31.1058 -76.9462 -3.72718 -7.42221* -3.2945 SS 0.404434*** -32.6659 -57.3767 -6.88342 20.29474 -9.81836 -32.5763 0.415197** -3.42464*** 0.651393 IS 0.189297 -84.6241 -100.129 27.68631 115.2764** 75.38897 -83.4084** 2.458763 -4.64637** 2.992217 GS 0.49025 -71.8689 -147.252* 0.681154 49.0084 12.88406 -69.6166* -0.15387 -5.4687** INF 9.66E-05 -0.1713 -0.48658 0.077932 0.37458 0.165987 0.071116 0.007232* 0.003084 0.015732* INT -0.00038 -0.04043 0.10411 -0.0003 0.021566 0.015338* 0.078301 0.000831 0.005628* -0.00053 GDP -3.51313*** 66.02533 202.7077 158.595* -272.503 107.2114* -17.2428 -2.89997 -6.61346 -4.87181 Significant at 10% (*), 5% (**) and 1% (***) 28 0.002785 0.215538 Table 8 (part: b): Estimates of the VECM and VAR for Inward Foreign Direct Investment in Short and Long Run Variables IS Equation GS Equation INF Equation INT Equation GDP Equation Short-run Long-run Short-run Long-run Short-run Long-run Short-run Long-run Short-run Long-run FDI -2.41573 4.170897 -2.30647 -11.6267 6.290668 -65.7163* 220.6307* -377.194* 526.706*** 0.083573** FR 0.014498 -0.00477 0.005592 0.013543 -0.01465 0.018601 0.052862 -0.00541 0.191129 0.000269 ER -0.01844 -0.00942 -0.01909* 0.025153 0.049816* -0.00207 0.061526 -0.32065 0.176253 3.07E-05 PR -0.01486 0.004191 -0.01153 -0.01404 0.032584 0.149825 0.166238 0.205616 0.438684 -6.82E-06 BS -4.33729 -4.07269 -7.33197 10.96304 19.62065 8.623752 -155.459* 397.48 338.6473** 0.132226 SS -5.36268*** 0.241972 -3.82368*** -0.97456 10.64303*** 18.59765 -35.372 79.62014 82.69469** 0.083573** IS -10.299*** 2.455609* -6.08664*** -7.29357 16.22712** -12.8238 -184.649*** 74.15281 231.4844*** -0.12228 GS -7.09607* -0.37447 -6.09448*** 0.586294 16.42828** 6.899991 -133.784*** 191.0597 233.6194*** 0.034507 INF -0.00212 0.008562 0.000812 -0.02432 -0.00542 0.151846 -0.51827** 0.035628 0.368117 0.000405 INT 0.008108 0.000901 0.006749* -0.00164 -0.01735 0.043507 0.086024 -0.11008 -0.19278* 0.000101 GDP -13.6764 -3.68304 -8.41064 9.162577 22.52664 51.29052 306.119* -331.765 -217.217 -0.00559 Significant at 10% (*), 5% (**) and 1% (***) 29 5. Conclusion The present work investigates the determinants of inward foreign direct investment in Jordan over the period 1996-2010. Using vector autoregressive model (VAR), Johansen co-integration test, Granger causality and error correction model (lagged model). They suggest the following findings: Johansen co-integration test confirmed the existence of a long run equilibrium relationship among inward FDI and endogenous variables (.Jordanian country risk (financial, economic, and political risk), macroeconomic factors (inflation, interest, GDP) and stock market price. The Granger causality finds the presence of bidirectional causality between inward FDI, Jordanian economic risk, the price of stock market sectors (banking, services, industry and general sectors), inflation rate and GDP, but for other determinants, there is presence of unidirectional causality only. Error correction models captures the short run relationship among the exogenous and endogenous variables.in the short-run inward FDI in Jordan is significantly influenced by financial risk, political risk, interest rate, GDP. Vector autoregressive model capture the long run relationship in the system. In the long-run political risk, banking and services stock market price, interest rate, inflation rate and GDP appear to influence the flow of FDI. The results suggest inward foreign investment in Jordan are largely influenced by financial, economic and political risks, inflation, interest rate, GDP, stock market price. Therefore, in order to attract more FDI inflows to Jordan the following actions should be taken into account: insisting on opening policy, taking investment incentives (fiscal incentives and financial incentives), sustaining stable economic growth, limiting inflation, improving competitiveness, strengthening the protection of intellectual property rights, overcoming bureaucratic corruption phenomenon, making further deepening of economic reforms, enforcing hard budget constraints, etc. Of these factors, protecting intellectual property right and striking bureaucratic corruption are especially important. This is because a weak protection of intellectual property right will increase the probability of imitation and thus make a host country a less attractive location for foreign investors. The policy makers should concentrate on creating the conditions, such as improving shareholder rights and the quality of local legal system, that allow corporations to issue and trade shares abroad efficiently. In addition, they should encourage that its local trading system is linked tightly or merged with global markets. Furthermore, the government should encourage foreign trading system and clearing and settlement operators to provide 30 services locally, remove any impediments against foreign participation. Finally, illiquid and non-transparent local market, portfolio restrictions that require investment in local instruments more than 10% should be lifted to attract more FDI. References: Alfaro, Laura, AreendamChanda, SebnemKalemli-Ozcan, and SelinSayek. "Does Foreign Direct Investment Promote Growth? Exploring the Role of Financial Markets on Linkages."Journal of Development Economics 91, no. 2: 242-56. Alfaro, Laura, AreendamChanda, SebnemKalemli-Ozcan, and SelinSayek. "Fdi and Economic Growth: The Role of Local Financial Markets." Journal of International Economics 64, no. 1 (2004): 89-112. Arratibel, Olga, DavideFurceri, Reiner Martin, and Aleksandra Zdzienicka."The Effect of Nominal Exchange Rate Volatility on Real Macroeconomic Performance in the CeeCountries."Economic Systems In Press, Corrected Proof. Asiedu, Elizabeth. "Foreign Direct Investment in Africa: The Role of Natural Resources, Market Size, Government Policy, Institutions and Political Instability." The World Economy 29, no. 1 (2006): 63-77 Asiedu, Elizabeth, and Donald Lien. "Democracy, Foreign Direct Investment and Natural Resources." Journal of International Economics 84, no. 1 (2011): 99-111. Asiedu, Elizabeth, Yi Jin, and Boaz Nandwa. "Does Foreign Aid Mitigate the Adverse Effect of Expropriation Risk on Foreign Direct Investment?" Journal of International Economics 78, no. 2 (2009): 268-75.. Awokuse, Titus O., and Hong Yin. "Intellectual Property Rights Protection and the Surge in Fdi in China." Journal of Comparative Economics 38, no. 2: 217-24. Azémar, Céline, and Andrew Delios. "Tax Competition and Fdi: The Special Case of Developing Countries." Journal of the Japanese and International Economies 22, no. 1 (2008): 85-108. Azman-Saini, W. N. W., Ahmad ZubaidiBaharumshah, and Siong Hook Law. "Foreign Direct Investment, Economic Freedom and Economic Growth: International Evidence." Economic Modelling 27, no. 5: 1079-89. Baker, Malcolm, C. Fritz Foley, and Jeffrey Wurgler. "Multinationals as Arbitrageurs: The Effect of Stock Market Valuations on Foreign Direct Investment." Review of Financial Studies 22, no. 1 (2009): 337-69. Bevan, Alan A., and Saul Estrin."The Determinants of Foreign Direct Investment into European Transition Economies."Journal of Comparative Economics 32, no. 4 (2004): 775-87. Bitzenis, Aristidis, AntonisTsitouras, and Vasileios A. Vlachos. "Decisive Fdi Obstacles as an Explanatory Reason for Limited Fdi Inflows in an Emu Member State: The Case of Greece." Journal of Socio-Economics 38, no. 4 (2009): 691-704. Blonigen, Bruce A., Ronald B. Davies, Glen R. Waddell, and Helen T. Naughton. "Fdi in Space: Spatial Autoregressive Relationships in Foreign Direct Investment." European Economic Review 51, no. 5 (2007): 1303-25. 31 Brooks, Chris. Introductory Econometrics for Finance Second edition ed. Melbourne: Cambridge University Press, 2008. Busse, Matthias, and CarstenHefeker."Political Risk, Institutions and Foreign Direct Investment."European Journal of Political Economy 23, no. 2 (2007): 397-415. Caves, Richard E. Multinational Enterprise and Economic Analysis. 3 ed. UK: University Press, Cambridge 2007. Chow, G.C. Best Linear Unbiased Interpolation, Distribution, and Extrapolation of Time Series by Related Series. Princeton University., 1971. Cuervo-Cazurra, Alvaro. "Better the Devil You Don't Know: Types of Corruption and Fdi in Transition Economies." Journal of International Management 14, no. 1 (2008): 12-27. Cuyvers, Ludo, Reth Soeng, Joseph Plasmans, and Daniel Van Den Bulcke. "Determinants of Foreign Direct Investment in Cambodia." Journal of Asian Economics 22, no. 3 (2011): 222-34. Demekas, Dimitri G., BalázsHorváth, ElinaRibakova, and Yi Wu."Foreign Direct Investment in European Transition Economies--the Role of Policies."Journal of Comparative Economics 35, no. 2 (2007): 369-86. Demirbag, Mehmet, EkremTatoglu, and Keith W. Glaister. "Factors Influencing Perceptions of Performance: The Case of Western Fdi in an Emerging Market." International Business Review 16, no. 3 (2007): 310-36. De Santis, R.A., Anderton, R., & Hijzen, A. (2004). On the determinants of Euro area FDI to the United States: The knowledge-capital—Tobin’s Q framework (Working Paper 329). European Central Bank. De Santis, Roberto A., and Melanie Lührmann. "On the Determinants of Net International Portfolio Flows: A Global Perspective." Journal of International Money and Finance 28, no. 5 (2009): 880-901. Dunning, J, H andLundan, S, M. Multinational Enterprises and Global Economy Second Edition. UK: Edward Elgar, 2008. Egger, Peter, and HannesWinner."Evidence on Corruption as an Incentive for Foreign Direct Investment."European Journal of Political Economy 21, no. 4 (2005): 932-52. Engle, Robert F., and C. W. J. Granger. "Co-Integration and Error Correction: Representation, Estimation, and Testing." Econometrica 55, no. 2 (1987): 251-76. Froot, Kenneth A., and Jeremy C. Stein. "Exchange Rates and Foreign Direct Investment: An Imperfect Capital Markets Approach." Quarterly Journal of Economics 106, no. 4 (1991): 1191-217. Feridun, Mete, and Yaya Sissoko. "Impact of Fdi on Economic Development: A Causality Analysis for Singapore, 1976 - 2002." International Journal of Economic Sciences & Applied Research 4, no. 1 (2011): 7-17. Farrell, R., Gaston, N., & Sturm, J. E. "Determinants of Japan’s Foreign Direct Investment: A Panel Study, 1984–1995." Centre for Japanese Economic Studies, no. CJES research papers no. 2001-1. (2000): 1-28. Gujarati, Damodar N. Basiceconometrics. 3rd. New York: McGraw-Hill, 1995. 32 Guru-Gharana, Kishor K., and Deergha R. Adhikari. "Econometric Investigation of Relationships among Export, Fdi and Growth in China: An Application of Toda-Yamamoto-DoladoLutkephol Granger Causality Test." Journal of International Business Research 10, no. 2 (2011): 31-50. Hasen, B., Gianluigi, G. the determinants of foreign direct investment a panel data study on AMU countries. Liverpool Business School(2007). Hansen, Henrik, and John Rand. "On the Causal Links between Fdi and Growth in Developing Countries." World Economy 29, no. 1 (2006): 21-41. Jinjarak, Yothin. "Foreign Direct Investment and Macroeconomic Risk."Journal of Comparative Economics 35, no. 3 (2007): 509-19. Johnston, J. and DiNardo. J. Econometric Methods. Fourth edition ed. Sydney: McGraw-Hill, 1997. Jones, J and Wren, C. Foreign Direct Investment and the Regional Economy. USA: Ashgate publishing company, 2006. Kang, Yuanfei, and Fuming Jiang. "Fdi Location Choice of Chinese Multinationals in East and Southeast Asia: Traditional Economic Factors and Institutional Perspective." Journal of World Business In Press, Corrected Proof. Karabay, Bilgehan. "Foreign Direct Investment and Host Country Policies: A Rationale for Using Ownership Restrictions." Journal of Development Economics 93, no. 2: 218-25. Katz, Barbara G., and Joel Owen. "Should Governments Compete for Foreign Direct Investment?" Journal of Economic Behavior& Organization 59, no. 2 (2006): 230-48. Kenisarin, Murat M., and Philip Andrews-Speed. "Foreign Direct Investment in Countries of the Former Soviet Union: Relationship to Governance, Economic Freedom and Corruption Perception." Communist and Post-Communist Studies 41, no. 3 (2008): 301-16. Kinda, Tidiane. "Investment Climate and Fdi in Developing Countries: Firm-Level Evidence." World Development 38, no. 4 (2010): 498-513. Kolstad, Ivar, and EspenVillanger."Determinants of Foreign Direct Investment in Services."European Journal of Political Economy 24, no. 2 (2008): 518-33. Lim, Sung-Hoon. "How Investment Promotion Affects Attracting Foreign Direct Investment: Analytical Argument and Empirical Analyses." International Business Review 17, no. 1 (2008): 39-53. Lin, Feng-Jyh."The Determinants of Foreign Direct Investment in China: The Case of Taiwanese Firms in the It Industry."Journal of Business Research 63, no. 5 (2010): 479-85. Majocchi, Antonio, and Manuela Presutti. "Industrial Clusters, Entrepreneurial Culture and the Social Environment: The Effects on Fdi Distribution." International Business Review 18, no. 1 (2009): 76-88. Mankiw, N.Gregory. Macroeconomics. 6th ed. New York: Worth Publishers, 2007. Meschi, Pierre-Xavier, and Edson LuizRiccio."Country Risk, National Cultural Differences between Partners and Survival of International Joint Ventures in Brazil."International Business Review 17, no. 3 (2008): 250-66. 33 Moosa, Imad A., and Buly A. Cardak. "The Determinants of Foreign Direct Investment: An Extreme Bounds Analysis." Journal of Multinational Financial Management 16, no. 2 (2006): 199211. Neumayer, Eric, and Laura Spess. "Do Bilateral Investment Treaties Increase Foreign Direct Investment to Developing Countries?" World Development 33, no. 10 (2005): 1567-85. Pan, Yigang. "The Inflow of Foreign Direct Investment to China: The Impact of Country-Specific Factors." Journal of Business Research 56, no. 10 (2003): 829. Rammal, HussainGulzar, and Ralf Zurbruegg."The Impact of Regulatory Quality on Intra-Foreign Direct Investment Flows in the AseanMarkets."International Business Review 15, no. 4 (2006): 401-14. Ruebner, Joahua. "U.S.-Jordan Free Trade Agreement." In CRS report for congress, 2, 2001. Russ, Katheryn Niles. "The Endogeneity of the Exchange Rate as a Determinant of Fdi: A Model of Entry and Multinational Firms." Journal of International Economics 71, no. 2 (2007): 344-72. Tomlin, Kasaundra M. "Japanese Fdi into U.S. Service Industries: Exchange Rate Changes and Services Tradability." Japan and the World Economy 20, no. 4 (2008): 521-41. Tekin, Rıfat Barış. "Economic Growth, Exports and Foreign Direct Investment in Least Developed Countries: A Panel Granger Causality Analysis." Economic Modelling 29, no. 3 (2012): 86878. Tolentino, Paz Estrella. "Home Country Macroeconomic Factors and Outward Fdi of China and India." Journal of International Management 16, no. 2 (2010): 102-20. Trevino, Len J., Douglas E. Thomas, and John Cullen. "The Three Pillars of Institutional Theory and Fdi in Latin America: An Institutionalization Process." International Business Review 17, no. 1 (2008): 118-33. Uctum, Merih, and Remzi Uctum. "Crises, Portfolio Flows, and Foreign Direct Investment: An Application to Turkey." Economic Systems 35, no. 4 (2011): 462-80. Wei, Y., Liu, X. Foreign Direct Investment in China: Determinants and Impact. Cheltenham: Edward Elgar., 2001. Xing, Yuqing. "Why Is China So Attractive for Fdi? The Role of Exchange Rates."China Economic Review 17, no. 2 (2006): 198-209. 34
© Copyright 2026 Paperzz