Nonlinear Analysis: Modelling and Control, 2001, v. 6, No. 1, 3-8 Asymptotic of the Joint Distribution of Multivariate Extrema A. Aksomaitis and A. Jokimaitis Department of Applied Mathematics, Kaunas University of Technology Studentu 50, 3028, Kaunas, Lithuania e-mail: [email protected] Received: 16.01.2001 Accepted: 14.03.2001 Abstract Let Wn and Zn be a bivariate extrema of independent identically distributed bivariate random variables with a distribution function F. in this paper the nonuniform estimate of convergence rate of the joint distribution of the normalized and centralized minima and maxima is obtained. Keywords: multivariate extreme value, limit distributions, convergence rate 1 Introduction Let { X j = (X 1, j , X 2, j ), j ≥ 1 } be independent and identically distributed bivariate random variables with a distribution function F (x1 , x 2 ) = P (X 1, j < x1 , X 2, j < x 2 ) ∀j ≥ 1 , and let x = (x1 , x 2 ) be an arbitrary point of the Euclidean space. We define by x + y = (x1 + y1 , x 2 + y 2 ) , xy = (x1 y1 , x 2 y 2 ) , x x1 x 2 = , y y1 y 2 the arithmetical operations on vectors. By the inequality x < y we mean the system of inequalities x i < y i (i = 1,2 ) . We form bivariate maxima and minima 3 Z n = (max (X 1,1 , , X 1, n ), max (X 2,1 , , X 2,n )) , W n = (min (X 1,1 , , X 1, n ), min (X 2,1 , , X 2, n )). Let {a n = (a1,n , a 2,n ), n ≥ 1}, {bn = (b1,n , b2,n ) > (0,0), n ≥ 1} be sequences of centralizing and normalizing vectors. If the distribution function F and sequences of centralizing and normalizing vectors are such that the following limit exits: lim n(1 − F (a n + bn y )) = u ( y1 , y 2 ) > 0 , n →∞ then lim P(Z n < a n + bn y ) = H ( y ) = e −u ( y1 , y2 ) , (1) n →∞ where H ( y ) is a nondegenerate distribution function of two variables. Let {c n = (c1,n , c 2,n ), n ≥ 1}, {d n = (d1,n , d 2,n ) > (0,0), n ≥ 1} be sequences of centralizing and normalizing vectors. If the distribution function F and sequences of centralizing and normalizing vectors are such that the following limits exist lim nF1 (c1, n + d 1,n x1 ) = z1 (x1 ) > 0 , n →∞ lim nF2 (c 2,n + d 2,n x 2 ) = z 2 (x 2 ) > 0 , n →∞ lim n(F1 (c1,n + d 1,n x1 )+ F2 (c 2, n + d 2,n x 2 )− F (c n + d n x )) = z (x1 , x 2 ) > 0 , n →∞ then lim P(W n < c n + d n x ) = L(x ) = 1 − e − z1 (x ) − e − z2 (x2 ) + e − z (x1 , x2 ) , n →∞ (2) where L(x ) is a nondegenerate distribution function of two variables, and F1 (x1 ) , F2 (x 2 ) are marginal distribution functions of the distribution function F(x). The necessary and sufficient conditions for the convergence of normalized maxima and normalized minima are formulated in [3]. Suppose that conditions (1) and (2) hold true. Since the bivariate maxima and bivariate minima are asymptotically independent (see [2]), then lim P(Z n < a n + bn y, W n < c n + d n x ) = H ( y )L(x ) . (3) n →∞ In this paper we are going to obtain a nonuniform estimate of the convergence rate in (3). It will generalize the result obtained in [1]. 4 2 Main result Let us denote ∆ [cn + d n x, an + bn y ) F = F (a n + bn y ) + F (c n + d n x ) − − F (c1, n + d 1,n x1 , a 2,n + b2, n y 2 )− F (a1, n + b1, n y1 , c 2,n + d 2,n x 2 ) , u1, n ( y ) = n(1 − F (a n + bn y )) , v1, n ( y ) = u1,n ( y ) − u ( y ) , u 2,n ( y, x1 ) = n(1 − F (a n + bn y ) + F (c1, n + d 1, n x1 , a 2, n + b2, n y 2 )) , v 2, n ( y, x1 ) = u 2, n ( y, x1 ) − u ( y ) − z1 (x1 ) , u 3, n ( y, x 2 ) = n(1 − F (a n + bn y ) + F (a1,n + b1, n y1 , c 2, n + d 2, n x 2 )) , v 3, n ( y, x 2 ) = u 3, n ( y, x 2 ) − u ( y ) − z 2 (x 2 ) , ( u 4,n ( y, x ) = n 1 − ∆ [cn + d n x, an + bn y ) F ) v 4, n ( y, x ) = u 4, n ( y, x ) − u ( y ) − z (x ) . Theorem. Suppose that (3) holds, and a n + bn y > c n + d n x . For all x, y , for which v1, n ( y ) ≤ log 2 , v 2, n ( y, x1 ) ≤ log 2 , v 3, n ( y, x 2 ) ≤ log 2 , v 4, n ( y, x ) ≤ log 2 , the following estimate holds true: P(Z n < a n + bn y, W n < c n + d n x ) − H ( y )L(x ) ≤ ≤ ∆ 1,n ( y ) + ∆ 2, n ( y, x1 ) + ∆ 3, n ( y, x 2 ) + ∆ 4, n ( y, x ) . Here ∆ 1, n ( y ) = u12, n ( y )e 2(n − 1) ∆ 2, n ( y, x1 ) = ∆ 3, n ( y, x 2 ) = ∆ 4, n ( y , x ) = − u1, n ( y ) u 22, n ( y, x1 )e ( − u 2 , n ( y , x1 ) 2(n − 1) u 32, n ( y, x 2 )e − u 3, n ( y , x 2 ) 2(n − 1) u 42, n ( y, x )e ) + e −u ( y ) v1,n ( y ) + v12, n ( y ) , −u 4, n ( y , x ) 2(n − 1) ( ) + e −u ( y )− z1 (x1 ) v 2, n ( y, x1 ) + v 22, n ( y, x1 ) , ( ) + e −u ( y )− z2 (x2 ) v 3, n ( y, x 2 ) + v 32, n ( y, x 2 ) , ( ) + e −u ( y )− z (x ) v 4, n ( y, x ) + v 42, n ( y, x ) . 5 Proof. We have P(Z n < y, W n < x ) = P(Z n < y ) − P (Z n < y, W1, n ≥ x1 )− − P (Z n < y, W 2, n ≥ x 2 )+ P(Z n < y, W n ≥ x ) = ( ) = F n ( y ) − (F ( y ) − F (x1 , y 2 ))n − (F ( y ) − F ( y1 , x 2 ))n + ∆ [x, y ) F n , if y > x , and P(Z n < y, W n < x ) = P(Z n < y ) = F n ( y ) , if y ≤ x . Here W1,n , W 2,n are components of the bivariate minima Wn. Let a n + bn y > c n + d n x . We have P(Z n < a n + bn y, W n < c n + d n x ) − H ( y )L(x ) ≤ ≤ F n (a n + bn y ) − e −u ( y ) + + (F (a n + bn y ) − F (c1,n + d 1,n x1 , a 2,n + b2, n y 2 ))n − e −u ( y )− z1 (x1 ) + (4) + (F (a n + bn y ) − F (a1, n + b1, n y1 , c 2, n + d 2, n x 2 ))n − e −u ( y )− z2 (x2 ) + ( + ∆ [cn + d n x, an + bn y ) F )n − e −u (y )− z (x ) . Let us estimate the first summand of the right – hand side of the inequality (4). We have (5) F n (a n + bn y ) − e −u ( y ) ≤ ≤ F n (a n + bn y ) − e − u1, n ( y ) +e − u1, n ( y ) − e −u ( y ) . Let us estimate the second summand of the right – hand side of the inequality (5). Applying the inequality n x 2e −x x 0 ≤ e − x − 1 − ≤ 2(n − 1) n we get F n (a n + bn y ) − e − u1, n ( y ) (0 ≤ x ≤ n ) , = u1,n ( y ) − e −u1,n ( y ) ≤ = 1 − n n ≤ u12,n ( y )e (6) − u1, n ( y ) 2(n − 1) . Let us estimate the first summand of the right – hand side of the inequality (5). Applying the inequality e − y − e − x ≤ e − x x − y + (x − y )2 ( x − y ≤ log 2 ) , ( ) we get 6 e − u1, n ( y ) ( ) − e −u ( y ) ≤ e −u ( y ) v1,n ( y ) + v12,n ( y ) , (7) if v1,n ( y ) ≤ log 2 . Taking into account inequalities (6) and (7), from the inequality (5) we get (8) F n (a n + bn y ) − e −u ( y ) ≤ ∆ 1, n ( y ) , if v1,n ( y ) ≤ log 2 . Analogously, we get (F (a n + bn y ) − F (c1,n + d1,n x1 , a 2,n + b2,n y 2 ))n − e −u ( y )− z (x ) ≤ 1 1 ≤ ∆ 2,n ( y, x1 ) , (9) if v 2,n ( y, x1 ) ≤ log 2 ; (F (a n + bn y ) − F (a1,n + b1,n y1 , c2,n + d 2,n x2 ))n − e −u ( y )− z (x ) ≤ 2 ≤ ∆ 3,n ( y, x 2 ) , 2 (10) if v3,n ( y, x 2 ) ≤ log 2 ; (∆ [c +d x,a +b y )F )n − e −u (y )− z (x ) ≤ n n n n ≤ ∆ 4, n ( y , x 2 ) , (11) if v 4,n ( y, x 2 ) ≤ log 2 . Taking into account inequalities (8) – (11), from the inequality (4) we get the estimate in (3). Theorem is proved. 3 The Example Let {X j , j ≥ 1} be independent identically distributed bivariate random variables with a distribution function F (x ) = 1 − e − x1 − e − x2 + e − x1 − x2 , x1 > 0, x 2 > 0 . For the chosen centralizing and normalizing vectors a n = (log n, log n ) , bn = (1,1) , c n = (0, 0 ) , d n = (1 n , 1 n ) , we have lim P(Z n < a n + bn y, Wn < c n + d n x ) = H ( y )L(x ) ; n →∞ here ( ) H ( y ) = exp − e − y1 − e − y2 , y1 , y 2 ∈ R , 7 (12) L(x ) = 1 − e − x1 − e − x2 + e − x1 − x2 , x1 > 0, x 2 > 0 . We shall estimate the convergate rate in (12). We have u1,n ( y ) = e − y1 + e − y2 − v1,n ( y ) = − e − y1 − y2 , n e − y1 − y2 , n u 2,n ( y, x1 ) = e − y1 + e − y2 − x1 n − e − y1 − y2 − x1 + n 1 − e n , n − y − y2 − x1 e 1 v 2,n ( y, x1 ) = e − y2 e n − 1 − n u 3,n ( y, x 2 ) = e − y2 + e − y1 − x2 n − − x1 + n 1 − e n − x1 , e − y1 − y2 − x2 + n1 − e n , n − y − y2 − x2 e 1 v3,n ( y, x 2 ) = e − y1 e n − 1 − n − x2 + n 1 − e n − x 2 , ( ) e − y1 − y2 + n 1 − e −(x1 − x2 ) n , n −y −y x2 x1 − − e 1 2 + n 1 − e −(x1 + x2 ) n − x1 − x 2 . v 4,n ( y, x ) = e − y1 e n − 1 + e − y2 e n − 1 − n Evidently, the order of the convergence rate with respect to n equals 1 n . u 4, n ( y , x ) = e − y1 − x2 n +e − y2 − x1 n − ( ) 4 References 1. Aksomaitis A., Jokimaitis A., “An asymptotic of the distribution of extrema of independent random variables”, Liet. Mat. Rinkinys, 35, p.1-13, 1995 2. Galambos J., The Asymptotis Theory of Extreme Order Statistics, Wiley, New York, 1978 3. Marshall A., Olkin I., “Domains of attraction of multivariate extreme value distributions”, Ann. Probab., 11, p. 168 - 177, 1983 8
© Copyright 2026 Paperzz