Transient Analysis of Markov Processes

Lecture 3: Algorithmic Methods for
M/M/1-type models: Quasi Birth
Death Process
Dr. Ahmad Al Hanbali
Department of Industrial Engineering
University of Twente
[email protected]
1
Lecture 3
๏ฑ
๏ฑ
This Lecture deals with continuous time Markov
chains with infinite state space as opposed to finite
space Markov chains in Lectures 1 and 2
Objective: To find equilibrium distribution of the
Markov chain
Lecture 3: M/M/1 type models
2
Background (1): M/M/1 queue
๏ฑ
Customers arrive according to Poisson process of
rate ๐œ†, i.e., the inter-arrival times are iid exponential
random variables (rv) with rate ๐œ†
๏ฑ
Customers service times are iid exponential rv with
rate ๐œ‡
๏ฑ
inter-arrivals and service times are independent
๏ฑ
Service discipline can be Fisrt-In-First-Out (FIFO),
Last-In-First-Out (LIFO), or Processor Sharing (PS)
Under above assumptions, {๐‘(๐‘ก), ๐‘ก โ‰ฅ 0}, the nbr of
customers in M/M/1 queue at time ๐‘ก is continuous-time
infinite space Markov chain
Lecture 3: M/M/1 type models
3
Background (2): M/M/1 queue
ฮป
0
ฮป
µ
µ
ฮป
i
i-1
1
µ
ฮป
ฮป
µ
ฮป
i+1
µ
µ
Let ๐‘๐‘– denote equilibrium probability of state ๐‘–, then
โˆ’๐œ†๐‘0 + ๐œ‡๐‘1 = 0,
๐œ†๐‘๐‘–โˆ’1 โˆ’ ๐œ† + ๐œ‡ ๐‘๐‘– + ๐œ‡๐‘๐‘–+1 = 0,
๐‘– = 1,2, โ€ฆ
Solving equilibrium equations for ๐œŒ = ๐œ†/๐œ‡ < 1 (with
๐‘–โ‰ฅ0 ๐‘๐‘– = 1) gives:
๐‘๐‘– = ๐‘๐‘–โˆ’1 ๐œŒ, ๐‘0 = 1 โˆ’ ๐œŒ โ‡’ ๐‘๐‘– = 1 โˆ’ ๐œŒ ๐œŒ๐‘– , ๐‘– โ‰ฅ 0,
This means N is geometrically distributed with parameter ๐œŒ
Lecture 3: M/M/1 type models
4
Background (3)
Stability condition, expected queue length is finite,
load ฯ:= ฮป/µ < 1โ‡’ ๐œ† < ๐œ‡. This can be interpreted as
drift to right is smaller than drift to left
๏ฑ
In stable case ฯ is probability the M/M/1 system is
non-empty, i.e. , ๐‘ƒ(๐‘ = 0) = 1 โˆ’ ๐œŒ
๏ฑ
Q, the generator of M/M/1 queue, is a tridiagonal
matrix, form has the form
โˆ’๐œ† ๐œ†
0 โ€ฆ
๐œ‡ โˆ’๐œ† โˆ’ ๐œ‡ ๐œ† โ‹ฑ
๐‘„= 0
๐œ‡ โˆ’๐œ† โˆ’ ๐œ‡ โ‹ฑ
๐œ‡ โ‹ฑ
โ‹ฑ
โ‹ฎ
โ‹ฑ โ‹ฑ
โ‹ฑ
โ‹ฎ
Lecture 3: M/M/1 type models
๏ฑ
5
M/M/1-type models: Quasi Birth
Death Process
๏ฑ
๏ฑ
๏ฑ
๏ฑ
A 2-dimensional irreducible continuous time Markov
process with states (๐‘–, ๐‘—), where ๐‘– = 0, โ€ฆ , โˆž and ๐‘— =
0, โ€ฆ , ๐‘š โˆ’ 1
Subset of state space with common ๐‘– entry is called
level ๐‘– (๐‘– > 0) and denoted ๐‘™(๐‘–) = {(๐‘–, 0), (๐‘–, 1), โ€ฆ , (๐‘–, ๐‘š โˆ’ 1)}.
๐‘™(0) = {(0,0), (0,1), โ€ฆ , (๐‘–, ๐‘› โˆ’ 1)}. This means state space
is โˆช๐‘–โ‰ฅ0 ๐‘™(๐‘–)
Transition rate from (๐‘–, ๐‘—) to (๐‘–โ€ฒ, ๐‘—โ€ฒ) is equal to zero for
|๐‘– โˆ’ ๐‘–โ€ฒ| โ‰ฅ 2
For ๐‘– > 0, transition rate between states in ๐‘™(๐‘–) and
between states in ๐‘™(๐‘–) and ๐‘™(๐‘– ± 1) is independent of ๐‘–
Lecture 3: M/M/1 type models
6
M/M/1-type models: Quasi Birth
Death Process
Order the states lexicographically, i.e., 0,0 , โ€ฆ , (0, ๐‘› โˆ’
Lecture 3: M/M/1 type models
7
QBDs stability
Theorem: The QBD is ergodic (i.e., mean recurrence time
of the states is finite) if and only if
๐œ‹๐ด0๐‘’ < ๐œ‹๐ด2๐‘’, (mean drift condition)
where ๐‘’ is the column vector of ones and ๐œ‹ is the
equilibrium distribution of the irreducible Markov chain
with generator ๐ด = ๐ด0 + ๐ด1 + ๐ด2,
๐œ‹๐ด = 0, ๐œ‹๐‘’ = 1
Interpretation: ๐œ‹๐ด0๐‘’ is mean drift from level ๐‘– to ๐‘– + 1.
๐œ‹๐ด2๐‘’ is mean drift from level ๐‘– to ๐‘– โˆ’ 1. Generator ๐ด
describes the behavior of QBD within level
Lecture 3: M/M/1 type models
8
Equilibrium distribution of QBDs
Let ๐‘๐‘– = (๐‘(๐‘–, 0), . . , ๐‘(๐‘–, ๐‘š โˆ’ 1)) and ๐‘ = (๐‘0, ๐‘1, โ€ฆ ) then
equilibrium equation ๐‘๐‘„ = 0 reads
๐‘0๐ต00 + ๐‘1๐ต10 = 0,
๐‘0๐ต01 + ๐‘1๐ต11 + ๐‘1๐ด2 = 0
๐‘๐‘–โˆ’1 ๐ด0 + ๐‘๐‘–๐ด1 + ๐‘๐‘–+1 ๐ด2 = 0, ๐‘– โ‰ฅ 2
Theorem: if the QBD is ergodic the equilibrium
probability distribution then reads
๐‘๐‘– = ๐‘1๐‘…๐‘–โˆ’1 , ๐‘– โ‰ฅ 2,
where ๐‘… = ๐ด0๐‘, called rate matrix, and the matrix ๐‘
records the expected sojourn time in the states of ๐‘™(๐‘–),
starting from ๐‘™(๐‘–), before the first visit to ๐‘™(๐‘– โˆ’ 1)
Lecture 3: M/M/1 type models
9
Proof
On board. Based on proof of Latouche & Ramaswami in
the book โ€œIntroduction to Matrix Analytic Methods in
Stochastic Modelingโ€ Chap. 6 p. 129-133
......
A direct result of the previous theorem is that spectral
radius of ๐‘… is < 1
It remains to find ๐‘0, ๐‘1 , and ๐‘… ?
Lecture 3: M/M/1 type models
10
Equilibrium Distribution (cnt'd)
Lemma: The matrix ๐‘… is the minimal nonnegative
solution of
๐ด0 + ๐‘…๐ด1 + ๐‘…2๐ด2 = 0
Lemma: The stationary probability vectors ๐‘0 and ๐‘1
are the unique solution of
๐‘0๐ต00 + ๐‘1 ๐ต10 = 0
๐‘0๐ต01 + ๐‘1 (๐ต11 +๐‘…๐ด2 ) = 0
๐‘0 ๐‘’๐‘› + ๐‘1 ๐ผ โˆ’ ๐‘… โˆ’1 ๐‘’๐‘š = 1 (Normalization condition)
where ๐‘’๐‘› and ๐‘’๐‘š are column vectors of ones with size ๐‘›
and ๐‘š, respectively
Lecture 3: M/M/1 type models
11
Compute R
๏ฑ
๏ฑ
๏ฑ
๏ฑ
๏ฑ
Rearrange the quadratic equation of the rate matrix:
๐‘… = โˆ’ ๐ด0 + ๐‘…2๐ด2 ๐ด1โˆ’1
๐ด1 is invertible since it is a generator of a transient
Markov chain l(n) of states, n>0
Fixed point equation solved by successive
substitution
๐‘…๐‘˜+1 = โˆ’(๐ด0 + ๐‘…๐‘˜2 ๐ด2 )๐ด1โˆ’1 , with ๐‘…0 = 0
It can be shown that ๐‘…๐‘˜ โ†’ ๐‘… for ๐‘˜ โ†’ โˆž
A way to check the correctness of ๐‘… is by verifying
that: ๐ต10 ๐‘’๐‘› + ๐ต11 + ๐‘…๐ด2 ๐‘’๐‘š = 0
Lecture 3: M/M/1 type models
12
Special cases
For ๐ด2 = ๐‘ฃ. ๐›ผ is a product of two vectors where ๐‘ฃ is
column vector and ๐›ผ is row vector with ๐‘š
๐‘—=0 ๐›ผ๐‘— = 1,
the rate matrix reads, ๐‘’ is a column vector of ones,
๐‘… = โˆ’๐ด0 ๐ด1 + ๐ด0 ๐‘’๐›ผ โˆ’1 ,
๏ฑ
For ๐ด0 = ๐‘ค. ๐›ฝ is a product of two vectors where ๐‘ค is
column vector and ๐›ฝ is row vector with ๐‘š
๐‘—=0 ๐›ฝ๐‘— = 1,
the rate matrix reads
๐‘… = ๐‘ค. ๐‘Ž โ‡’ ๐‘…๐‘– = ๐œ‚ ๐‘–โˆ’1 ๐‘…
where ๐‘Ž is some row and ๐œ‚ = ๐‘Ž. ๐‘ค (a number). ๐œ‚ is
spectral radius of ๐‘… and can be found as the root (0,1) of
det ๐ด0 + ๐‘ฅ๐ด1 + ๐‘ฅ 2 ๐ด2 = 0
๏ฑ
Lecture 3: M/M/1 type models
13
Spectral expansion method
๏ฑ
The balance equation can be seen as a difference
equation with a basis solution of form
๐‘๐‘› = ๐‘ฆ๐‘ฅ ๐‘› , ๐‘ฆ = ๐‘ฆ 0 , โ€ฆ , ๐‘ฆ ๐‘š
๏ฑ
โ‰  0 ๐‘Ž๐‘›๐‘‘ ๐‘ฅ < 1
Inserting this solution in the balance equation ๐‘๐‘›โˆ’1 ๐ด0 +
๐‘๐‘›๐ด1 + ๐‘๐‘›+1 ๐ด2 = 0, ๐‘› โ‰ฅ 2 yields
๐‘ฆ ๐ด0 + ๐‘ฅ๐ด1 + ๐‘ฅ 2 ๐ด2 = 0 โ‡’ det ๐ด0 + ๐‘ฅ๐ด1 + ๐‘ฅ 2 ๐ด2 = 0
๏ฑ
This latter equation has ๐‘š + 1 roots in the unit disk and
๐‘š
๐‘๐‘› =
๐‘๐‘— ๐‘ฆ๐‘— ๐‘ฅ๐‘—
๐‘›โˆ’1
, ๐‘› = 1,2, โ€ฆ
๐‘—=0
๏ฑ
The constants ๐‘๐‘— , ๐‘— = 0, โ€ฆ , ๐‘š, are found using the
boundary equations and the normalization condition
Lecture 3: M/M/1 type models
14
Spectral expansion method
๏ฑ
๏ฑ
๏ฑ
๏ฑ
The roots ๐‘ฅ0 , โ€ฆ , ๐‘ฅ๐‘š+1 are eigenvalue of the rate matrix
๐‘… with corresponding left eigenvectors ๐‘ฆ0 , โ€ฆ , ๐‘ฆ๐‘š+1
If it appears some these roots are of a multiplicity
higher than a more complicated basis solution should
be considered
No probabilistic interpretation is available for ๐‘ฅ๐‘– โ€™s and
๐‘ฆ๐‘– โ€™s
Numerically it has been found that Matrix geometric
methods is more stable than the spectral expansion
Lecture 3: M/M/1 type models
15
M/M/1 Type models
๏ฑ
Machine with set-up times
๏ฑ
Unreliable machine
๏ฑ
M/Er/1 model
๏ฑ
Er/M/1 model
๏ฑ
PH/PH/1 model
Lecture 3: M/M/1 type models
16
Machine with set-up times (1)
๏ฑ
๏ฑ
๏ฑ
In addition to assumptions of M/M/1 system, further
assume that the system is turned off when it is empty
System is turned on again when a new customer
arrives
The set-up time is exponentially distributed with mean
1/๐œƒ
Lecture 3: M/M/1 type models
17
Machine with set-up time (2)
๏ฑ
๏ฑ
Number of customers in system is not a Markov
process
Two-dimensional process of state (๐‘–, ๐‘—) where ๐‘– is
number of customers and ๐‘— is system state (๐‘— = 0,
sys. is off, ๐‘— = 1, sys. is on) is Markov process
Lecture 3: M/M/1 type models
18
Machine with set-up time (3)
๏ฑ
Let ๐‘(๐‘–, ๐‘—) denote equilibrium prob. of state (๐‘–, ๐‘—), ๐‘– โ‰ฅ
0, ๐‘— = 0,1. Equilibrium equations read
๐‘(0,0)๐œ† = ๐‘(1,1)๐œ‡
๐‘(๐‘–, 0)(๐œ† + ๐œƒ) = ๐‘(๐‘– โˆ’ 1,0)๐œ†,
๐‘–โ‰ฅ1
๐‘(๐‘–, 1)(๐œ† + ๐œ‡) = ๐‘(๐‘–, 0)๐œƒ + ๐‘(๐‘– + 1,1)๐œ‡ + ๐‘(๐‘– โˆ’ 1,1)๐œ†,
๏ฑ
๐‘–โ‰ฅ1
Let ๐‘๐‘– = (๐‘(๐‘–, 0), ๐‘(๐‘–, 1)), then Equilibrium eqs read
๐‘0๐ต1 + ๐‘1๐ต2 = 0,
๐‘๐‘–โˆ’1 ๐ด0 + ๐‘๐‘– ๐ด1 + ๐‘๐‘–+1 ๐ด2 = 0, ๐‘– โ‰ฅ 1
Lecture 3: M/M/1 type models
19
Machine with set-up time (4)
where
๐œ†
๐ด0 =
0
0 0
โˆ’ ๐œ†+๐œƒ
0
, ๐ด2 =
, ๐ด1 =
0 ๐œ‡
0
๐œ†
0 0
โˆ’๐œ† 0
๐ต1 =
, ๐ต2 =
0 ๐œ‡
0 โˆ’๐œ†
๐œƒ
โˆ’ ๐œ†+๐œ‡
,
We shall use the Matrix geometric to the find the
equilibrium probability
Lecture 3: M/M/1 type models
20
Matrix Geometric Method (1)
๏ฑ
Global balance equations are given by equating flow
from level ๐‘– to ๐‘– + 1 with flow from ๐‘– + 1 to ๐‘– which
gives,
๐‘ ๐‘–, 0 + ๐‘ ๐‘–, 1 ๐œ† = ๐‘ ๐‘– + 1,1 ๐œ‡, ๐‘– โ‰ฅ 1
๏ฑ
In matrix notation this gives
๏ฑ
๐œ†
๐‘๐‘–+1 ๐ด2 = ๐‘๐‘– ๐ด3, where ๐ด3 =
๐œ†
This gives, ๐‘– โ‰ฅ 1,
0
0
๐‘๐‘–โˆ’1 ๐ด0 + ๐‘๐‘– ๐ด1 + ๐ด3 = 0 โ‡’ ๐‘๐‘– = โˆ’๐‘๐‘–โˆ’1 ๐ด0 ๐ด1 + ๐ด3
โ‡’ ๐‘… = โˆ’๐ด0 ๐ด1 + ๐ด3
Lecture 3: M/M/1 type models
โˆ’1
๐œ†/ ๐œ†+๐œƒ
=
0
โˆ’1
๐œ†/๐œ‡
๐œ†/๐œ‡
21
Matrix Geometric method (2)
๏ฑ
Stability condition: absolute values of eigenvalues
of R should be strictly smaller than 1
๐œ† < ๐œ‡ and ๐œƒ > 0
๏ฑ
Normalization condition gives
๐‘0 ๐ผ + ๐‘… + ๐‘…2 + โ‹ฏ ๐‘’ = 1 โ‡’ ๐‘0 ๐ผ โˆ’ ๐‘…
๏ฑ
=1
Note 0,1 is a transient state thus ๐‘ 0,1 = 0.
๐œƒ
๐œ†
Normalization gives that ๐‘ 0,0 =
1โˆ’
๐œƒ+๐œ†
๏ฑ
โˆ’1 ๐‘’
๐œ‡
Mean number of customers
๐ธ[๐ฟ] =
Lecture 3: M/M/1 type models
๐‘–
๐‘–๐‘๐‘– ๐‘’ = ๐‘0 ๐‘… ๐ผ โˆ’ ๐‘…
โ‰ฅ 1
โˆ’2
๐‘’
22
Unreliable machine (1)
๏ฑ
๏ฑ
๏ฑ
customers arrive according to Poisson process of rate
๐œ†
Service times is exponentially distributed of rate ๐œ‡
Up time of the machine is exp. distributed with rate
1/๐œ‚
๏ฑ
Repair time is exp. dist. with rate 1/๐œƒ
๏ฑ
Stability condition: load is smaller than capacity of
the machine: ๐œ†/๐œ‡ < ๐‘ƒ(๐‘š๐‘Ž๐‘โ„Ž๐‘–๐‘›๐‘’ ๐‘–๐‘  ๐‘ข๐‘) = ๐œƒ/(๐œƒ + ๐œ‚)
Lecture 3: M/M/1 type models
23
Unreliable machine (2)
๏ฑ
Under the above assumption the two-dimensional
process of state (๐‘–, ๐‘—), where ๐‘– nbr of customers, ๐‘— the
state of machine (๐‘— = 1 machine up, ๐‘— = 0 machine
down), Then
Lecture 3: M/M/1 type models
24
Unreliable machine (3)
๏ฑ
Note ๐ด2 = ๐‘ฃ๐›ผ, matrix geometric method gives
๐‘๐‘–
๏ฑ
๏ฑ
=
๐‘0๐‘…๐‘– , ๐‘– โ‰ฅ 1, ๐‘… = โˆ’๐ด0 ๐ด1 + ๐ด0 ๐‘’๐›ผ
โˆ’1
=
๐œ†
๐œ‡
๐œ‚+๐œ‡
๐œ†+๐œƒ
๐œ‚
๐œ†+๐œƒ
1
1
Note in this case we have that ๐‘0 ๐ผ โˆ’ ๐‘… โˆ’1 = 1 โˆ’ ๐‘๐‘ข ๐‘๐‘ข ,
where ๐‘๐‘ข is probability that the machine is up ๐œƒ/(๐œ‚ + ๐œƒ).
We find ๐‘0 = 1 โˆ’ ๐‘๐‘ข
๐‘๐‘ข ๐ผ โˆ’ ๐‘… = ๐‘๐‘ข โˆ’
๐œ†
๐œ‡
๐œ‚
๐œ†+๐œƒ
1
Spectral expansion method gives
๐‘๐‘– = ๐‘1๐‘ฆ1๐‘ฅ1๐‘– + ๐‘2๐‘ฆ2๐‘ฅ2๐‘–
where ๐‘ฅ1 and ๐‘ฅ2 are roots of (eigenvalues of ๐‘…):
๏ฑ
๐œ‡ ๐œ† + ๐œƒ ๐‘ฅ 2 โˆ’ ๐œ† ๐œ† + ๐œ‡ + ๐œ‚ + ๐œƒ ๐‘ฅ + ๐œ†2 = 0
Lecture 3: M/M/1 type models
25
M/Er/1 model (1)
๏ฑ
๏ฑ
๏ฑ
Poisson arrivals with rate ฮป
Service times is Erlang distributed of r phases of
mean r/ฮผ, i.e., is sum r exponentially distributed rv
each of rate ฮผ
Stability is offered load is smaller than 1
ฯ = ฮป.r/ฮผ < 1
๏ฑ
Two dimensional process of state (i,j) where i is nbr of
customers in the system (excluding the customer in
service) and j remaining phases of customer in
service is Markov process
Lecture 3: M/M/1 type models
26
M/Er/1 model (2)
State diagram:
๐ด0 = ๐œ†๐ผ, ๐ด2 =
Lecture 3: M/M/1 type models
0
โ‹ฎ
โ‹ฎ
0
โ‹ฏ
โ‹ฏ
0
0
๐œ‡
โˆ’1 0
0 , ๐ด = ๐œ‡ 1 โˆ’1
1
โ‹ฎ โ‹ฑ
โ‹ฎ
0 โ‹ฏ
โ‹ฏ 0
โ€ฆ
โ‹ฑ
โ‹ฑ
1
0
0 โˆ’ ๐œ†๐ผ
0
โˆ’1
27
M/Er/1 model (2)
๏ฑ
Matrix geometric method gives
๐‘๐‘– = ๐‘0๐‘…๐‘– , ๐‘– โ‰ฅ 1,
๐‘… = โˆ’๐ด0 ๐ด1 + ๐ด0 ๐‘’๐›ผ
๏ฑ
= โˆ’๐œ† ๐ด1 + ๐œ†๐‘’๐›ผ
โˆ’1
Sherman-Morrison formula gives that, ๐‘ฅ = ๐œ‡/(๐œ† + ๐œ‡),
1
๐‘ฅ
โ‹ฎ
๐‘… = 1โˆ’๐‘ฅ
๐‘ฅ ๐‘Ÿโˆ’1
๏ฑ
โˆ’1
0
1
โ€ฆ
โ‹ฑ
โ‹ฑ โ‹ฑ
โ‹ฏ ๐‘ฅ
0
0 + 1โˆ’๐‘ฅ
0
๐‘ฅ๐‘Ÿ
1
1โˆ’๐‘ฅ
1 โˆ’ ๐‘ฅ2
โ‹ฎ
1 โˆ’ ๐‘ฅ๐‘Ÿ
๐‘ฅ ๐‘Ÿโˆ’1
โ€ฆ 1
Note for any M/PH/1 queue we have that ๐ด2 is a rank
one matrix (product of a column and row vector). So,
๐‘… can be found in closed form
Lecture 3: M/M/1 type models
28
Phase-Type Distribution
๏ฑ
๏ฑ
๏ฑ
๏ฑ
Consider a continuous time absorbing Markov chain
(AMC) with {1, โ€ฆ , ๐‘š} transient states and one
absorption state ๐‘š + 1, i.e., ๐‘ž๐‘š+1๐‘š+1 = 0.
Let ๐‘‡ denote the transition rate matrix between
transient states, and ๐›ผ the initial state probability.
Let ๐‘‡ 0 denote the transition rate vector of the transient
states to absorption state. ๐‘‡๐‘’ + ๐‘‡ 0 = 0 โ‡’ โˆ’๐‘‡ โˆ’1 ๐‘‡ 0 = ๐‘’
Definition: A probability distribution ๐น(. ) on [0,โˆž) is a
phase type distribution (PH-distribution) if it is the
distribution of the time to absorption of AMC. The pair
(๐›ผ, ๐‘ป) is called a representation ๐น(. )
Lecture 3: M/M/1 type models
29
Phase-Type Distribution
๏ฑ
๏ฑ
Examples of phase-type distribution are Erlang-n,
Hyper-exponential, and Coxian distributions
Hyper-exponential distribution of n phases each of
rate ๐œ‡๐‘– with ๐›ผ = ๐‘1, โ€ฆ , ๐‘๐‘›
p
p
p
1
ฮผ1
๏ฑ
n
2
1
2
n
ฮผ2
ฮผn
Coxian distribution of ๐‘› phases each of rate ๐œ‡๐‘– , where
๐‘๐‘– + ๐‘ž๐‘– = 1, ๐‘– = 1, . . , ๐‘› โˆ’ 1, and ๐‘ž๐‘› = 1, and ๐›ผ=(1,0,โ€ฆ,0)
p1ฮผ1
1
Lecture 3: M/M/1 type models
p2ฮผ2
2
q1ฮผ1
pn-1ฮผn-1
n
q2ฮผ2
ฮผn
30
PH/PH/1 queue
๏ฑ
๏ฑ
๏ฑ
๏ฑ
๏ฑ
Inter-arrival times distribution is phase-type with n
phases denoted ๐›ผ, ๐‘‡ and with mean โˆ’๐›ผ๐‘‡ โˆ’1 ๐‘’. Let
๐‘‡ 0 = โˆ’๐‘‡๐‘’
Service time distribution is of Phase type with ๐œˆ
phases denoted (๐›ฝ, ๐‘†) and with mean โˆ’๐›ฝ๐‘† โˆ’1 ๐‘’. Let
๐‘† 0 = โˆ’๐‘†๐‘’
Assume that customers are served as FIFO
The queue is stable if โˆ’๐›ผ๐‘‡ โˆ’1 ๐‘’ > โˆ’๐›ฝ๐‘† โˆ’1 ๐‘’
Let ๐‘๐‘ก , ๐ด๐‘ก , and ๐‘†๐‘ก denote number of jobs in the system,
phase of inter-arrival, and phase of job in service at
time t
Lecture 3: M/M/1 type models
31
PH/PH/1 model
๏ฑ
๏ฑ
The process ๐‘๐‘ก , ๐ด๐‘ก , ๐‘†๐‘ก is continuous-time Quasi-DeathProcess
For Cox2/Cox2/1 queue, transitions between level ๐‘–
states, level ๐‘– to ๐‘– + 1, and level ๐‘– to ๐‘– โˆ’ 1 are as follows:
Lecture 3: M/M/1 type models
32
PH/PH/1 model
Note if Q is generator of joint process of two independent
Markov chains of size ๐‘1and ๐‘2. Then, Q is sum of two
kronecker products, i.e.,
๐‘„ = ๐‘„1 โŠ— ๐ผ๐‘1 + ๐ผ๐‘2 โŠ— ๐‘„2
where ๐ด โŠ—B means every element of A is multiplied by B whole.
๏ฑ
The generator of the PH/PH/1
๐ต00 ๐ต01 0 0 โ€ฆ
๐ต10 ๐ด1 ๐ด0 0 โ‹ฑ
๐‘„=
0 ๐ด2 ๐ด1 ๐ด0 โ‹ฑ ,
โ‹ฎ โ‹ฑ ๐ด2 ๐ด1 โ‹ฑ
โ‹ฎ โ‹ฑ โ‹ฑ โ‹ฑโ‹ฑ
where ๐ด1 = ๐‘‡ โŠ— ๐ผ๐œˆ + ๐ผ๐‘› โŠ— ๐‘†, ๐ด0 = ๐‘‡ 0 ๐›ผ โŠ— ๐ผ๐œˆ , ๐ด2 = ๐ผ๐‘› โŠ— ๐‘† 0 ๐›ฝ,
๐ต00 = ๐‘‡, ๐ต01 = ๐‘‡ 0 ๐›ผ โŠ— ๐›ฝ, and ๐ต10 = ๐ผ โŠ— ๐‘† 0 .
Lecture 3: M/M/1 type models
33
PH/PH/1 model
๏ฑ
The rate matrix ๐‘… is the minimal solution of the quadratic
equation ๐ด0 + ๐‘…๐ด1 + ๐‘…2 A2 = 0,
๐‘‡ 0 ๐›ผ โŠ— ๐ผ๐œˆ + ๐‘…(๐‘‡ โŠ— ๐ผ๐œˆ + ๐ผ๐‘› โŠ— ๐‘†) + ๐‘…2 ๐ผ๐‘› โŠ— ๐‘† 0 ๐›ฝ = 0,
Example: consider the Cox2/Cox2/1 queue with mean interarrival time 6/5, mean service time 5/6,
โˆ’1 0.4
โˆ’1.5 0.5
๐›ผ = 1 0 ,๐‘‡ =
and ๐›ฝ = 1 0 , ๐‘† =
0 โˆ’2
0
โˆ’2
The iterative scheme needs about 40 iterations for 10โˆ’5 precision
๏ฑ
๐‘… = 0.3833
0.0975
1.2777
0.3251
๐‘0 = 0.2374 0.0681 , ๐ธ ๐‘
Lecture 3: M/M/1 type models
0.0639 0.0609 0.0140
0.2163 0.0214 0.0243
0.2129 0.2030 0.0467
0.7208 0.0712 0.0810
= 1.9582.
34
References
๏ฑ
๏ฑ
๏ฑ
๏ฑ
R. Nelson. Matrix geometric solutions in Markov models:
a mathematical tutorial. IBM Technical Report 1991.
G. Latouche and V. Ramaswami (1999), Introduction to
Matrix Analytic Methods in Stochastic Modeling. SIAM.
I. Mitrani and D. Mitra, A spectral expansion method for
random walks on semi-infinite strips, in: R. Beauwens and
P. de Groen (eds.), Iterative methods in linear algebra.
North-Holland, Amsterdam (1992), 141โ€“149.
M.F. Neuts (1981), Matrix-geometric solutions in
stochastic models. The John Hopkins University Press,
Baltimore.
Lecture 3: M/M/1 type models
35