EstimatingtrophicdiscriminationfactorsusingBayesian inferenceandphylogenetic,ecologicalandphysiologicaldata. DEsiR:DiscriminationEstimationinR. KevinHealy1.,SeánB.A.Kelly1,ThomasGuillerme2,RichardInger3,Stuart Bearhop3andAndrewL.Jackson1. TrinityCollegeDublin,DepartmentofZoology,SchoolofNaturalSciences,Dublin,IrelandandtheTrinityCentrefor BiodiversityResearch,TrinityCollegeDublin,Dublin2,RepublicofIreland.2ImperialCollegeLondon,SilwoodPark Campus,DepartmentofLifeSciences,BuckhurstRoad,AscotSL57PY,UnitedKingdom.3CentreforEcologyand Conservation,CollegeofLifeandEnvironmentalSciences,UniversityofExeter,CornwallCampus,PenrynTR109EZ,UK. 1 Abstract 1. Stable isotope analysis is a widely used tool for the reconstruction and interpretation of animal diets and trophic relationships. Analytical tools have improved the robustness of inferring the relative contribution of different prey sources to an animal’s diet by accounting for many of the sources of variation in isotopic data. One major source of uncertainty is Trophic Discrimination Factor (TDF), the change in isotopic signatures between consumers’ tissues and their food sources. This parameter can haveaprofoundimpactonmodelpredictions,butoften,itisnotfeasible toestimateaspecies’TDFvalueandsoresearchersoftenuseaggregated or taxon level estimates, an assumption that in turn has major implicationsfortheinterpretationofsubsequentanalyses. 2. We collected extensive carbon (δ13C) and nitrogen (δ15N) TDF data on mammals and birds from published literature. We then used a Bayesian linearmodellingapproachtodetermineif,andtowhatextent,variationin TDF values can be attributed to a species’ ecology, physiology, phylogenetic relationships and experimental variation. Finally, we developed a Bayesian imputation approach to estimate unknown TDF values and compared the accuracy of this tool using a series of crossvalidationtests. 3. Ourresultsshowthat,forbirdsandmammals,TDFvaluesareinfluenced byphylogeny,tissuetypesampled,dietofconsumer,isotopicsignatureof PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1950v3 | CC BY 4.0 Open Access | rec: 17 Apr 2017, publ: 17 Apr 2017 food source, and the error associated with the measurement of TDF withinaspecies.Furthermore,ourcross-validationtestsdeterminedthat, our tool can (i) produce accurate estimates of TDF values with a mean distanceof0.2‰fromobservedTDFvalues,and(ii)provideanestimate oftheprecisionassociatedwiththeseestimates,withspeciespresencein thedataallowingforareducedlevelofuncertainty. 4. Byincorporatingvarioussourcesofvariationandreflectingthelevelsof uncertaintyassociatedwithTDFestimatesournoveltoolwillcontribute to more accurate and honest reconstructions and interpretations of animaldietsandtrophicinteractions.Thistoolcanbeextendedreadilyto includeothertaxaandsourcesofvariationasdatabecomesavailable.To facilitate this, we provide a step-by-step guide and code for this tool: DiscriminationEstimationinR(DEsiR) Keywords(10):TrophicDiscriminationFactor,stableisotopes,trophic enrichmentfactor,trophicecology,mixingmodels,discriminationfactor, mammals,birds,DEsiR,BayesianImputation. Intro Theuseofstableisotopeanalysistoreconstructanimaldietsordetermine trophicrelationshipshasgrownsubstantiallyovertheprevioustwodecades (Post2002,Hussey,MacNeiletal.2014).Inrecentyearsthisgrowthhasbeen boostedbythedevelopmentofmixingmodelsthatallowfordietreconstruction insystemsthatoftenhavegreaterthantwosourcesmorethanthenumberof isotoperatiosmeasured(PhillipsandGregg2003,MooreandSemmens2008, Parnell,Ingeretal.2010,HopkinsIIIandFerguson2012,Fernandes,Millardet al.2014).Theabilityoftheseapproachestopredictaccuratelythedietary proportionsandhencetrophicrelationshipsdependsontherelativegeometryof themixtures(usuallytheconsumers)andtheirsources(theirfood)(Phillipsand Gregg2003,Phillips,Ingeretal.2014)inisotopicspace.Furthermore,variation inthesedata,arisingfrombothnaturalvariationamongsamplesandalso throughuncertaintyinparameters,cantogetherreduceboththeaccuracyand PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1950v3 | CC BY 4.0 Open Access | rec: 17 Apr 2017, publ: 17 Apr 2017 precisionofpredictionsmadebythesemixingmodelsbyalteringtherelative geometricpositionofconsumersandtheirsources.Onekeysourceofvariation, thatcancausefarmoreproblemsforusersthansample-dependentvariationis theparameterthatdescribestheaveragechangeinisotopicratiosbetween consumersandtheirdiets;thetrophicdiscriminationfactor(TDF). Trophicdiscriminationisthechangeinisotopicsignaturesattributedtothe biologicalandbiochemicalprocessesassociatedwiththeuptakeand assimilationoffoodsourcesbyconsumers(DeNiroandEpstein1981,Peterson andFry1987,FranceandPeters1997).Inthecaseofthecommonlyused elementsindietarystudies(C,N,S&H),thesechangesinisotoperatiosbetween sourcesandconsumersariseusuallyfromthepreferentialretentionofheavier isotopesbyconsumersleadingtoachangeintheratioofheavytolightisotopes ofagivenelement(Olive,Pinnegaretal.2003).WhileTDFcantypicallyvary fromspeciestospecies,theyalsovaryaccordingtoarangeofotherfactors includingconsumertissuetype,thetypeoffoodsource,theisotopicratioofthe foodsource,thenutritionalstatusofboththeconsumerandthefoodsourceand theforagingenvironmentoftheconsumer(Caut,Anguloetal.2009).Hence,in ordertoaccuratelyestimatetheTDFforagivenconsumer-preyrelationship,one mustconductanexperimentalstudythatcontrolsforthesemultiplesourcesof variation(Greer,Hortonetal.2015). Thehighcostsanddifficultyofperformingthesestudiesandasmanyspeciesare notamenabletocontrolledcaptiveenvironmentshasresultedinarelativelylow coverageofspeciesforwhichTDFestimatesareavailable(Caut,Anguloetal. 2009).Hence,moststableisotopestudiesondietaryproportionsandtrophic relationshipshavereliedongeneralapproximatelymeanestimatesacross multiplestudies,forexampletheadditionof+3.4‰fornitrogenand+0.4‰for carbon(DeNiroandEpstein1978,DeNiroandEpstein1981,Post2002); estimatesaggregatedforcertaintissuetypesorathightaxonomiclevels (McCutchan,Lewisetal.2003,Caut,Anguloetal.2009);ortheuseofestimates fromcloselyrelatedspecies(Bodey,Wardetal.2014).Whilesomeapproaches attempttoprovidegeneralTDFvaluesforhightaxonomiclevels(Caut,Anguloet PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1950v3 | CC BY 4.0 Open Access | rec: 17 Apr 2017, publ: 17 Apr 2017 al.2009)noneoftheseapproachesfullyincorporatesthetruevariationinTDFs associatedwithphylogeneticrelatedness;physiology;ecology;ortheerrorand naturalindividuallevelvariationassociatedwiththeexperimentalmeasureof thesevalues(McCutchan,Lewisetal.2003,DelRioandWolf2005,Robbins, Felicettietal.2005).Theseunaccountedsourcesofvariationmayimpactthe resultinganalysismainlythroughpropagatingerrorintothefinalresultsleading tooverlyconservativeresults(BondandDiamond2011),butonly,wewould argue,ifonespecifiesTDFswithverysmalluncertaintiesaroundthem(i.e. assumingoverlypreciseestimates).Inanycase,bybetteracknowledgingand accountingforthesesourcesinTDFvariation,moreaccurateestimatesand associatederrorscanbecalculatedwhichinturnwillyieldmorehonestand encompassingdescriptionsofconsumers’dietsandtrophicrelationships. HereweassesssourcesofvariationinTDFanddevelopatoolimplementinga BayesianlinearmodellingapproachthatincorporatesthevariationinTDF associatedwithphylogeny;physiology;ecologyandstudymeasurementerror. Bayesiantechniquesallowfortheimplicitimputation(i.e.estimation)ofmissing values,andhavebeendevelopedinseveralfields(Fagan,Pearsonetal.2013, Swenson2014,JetzandFreckleton2015,Schrodt,Kattgeetal.2015).Herewe exploitthisimputationapproachtoestimatevaluesforspeciesthathaveno currentTDFvalues:predictedestimateswilldrawinferencefromtheincluded explanatoryvariables,andwillreturnadistributionofestimatesratherthana singlepoint-estimate.Wetestourapproachbycollectingcarbon(δ13C)and nitrogen(δ15N)TDFvaluesfromtheliteratureforbothbirdsandmammalsand comparingtheseobservedvaluesagainstourestimates. OverallweshowthatTDFvaluesareinfluencedbyphylogeny,tissuetype,source isotopicsignature,diettypeandtheerrorassociatedwithmeasurementswithin aspecies,withtheimportanceofeachsourceofvariationdependentonthe element(Nitrogen,Carbon)andtaxonomicclass(Aves,Mammalia).Wethen exploittheabilityofBayesianInferencetoimputemissingvaluesinorderto predictwithuncertaintytheTDFforun-quantifiedspeciesandtestthese estimatesusingaseriesofcrossvalidationtestswherebothindividualsamples, PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1950v3 | CC BY 4.0 Open Access | rec: 17 Apr 2017, publ: 17 Apr 2017 andentirespeciesareomittedfromthemodelfittingprocessandtheirimputed valuescomparedwiththeirobservedvalues.Finally,weprovideastep-by-step guideofusingtheDEsiRpackage(https://github.com/healyke/DEsiR). Methods Datacollection Followingthemethodsof(Caut,Anguloetal.2009),wecollecteddataonTDFof stablecarbon(δ13C)andnitrogen(δ15N)isotopesinmammalsandbirdsas thesewerethetaxonwiththelargestamountofavailabledata(SeeDEsiR packageforupdatesthatincludefurthertaxa).Ourdatacollectioncovered publicationsfrom2007to2015andwassupplementedby(Caut,Anguloetal. 2009)whichcoveredtheperiodof1983-2007usingthesameselectioncriteria. Onlystudieswithisotopicratiosmeasuredonboththetissuesamplesandthe foodsourcewereused.ForalldatarelatingtoTDF,correspondingdataondiet, tissuetypesampledandforagingenvironmentwerealsocollected.Dietwas definedbytheanimalfeedusedduringthestudyandwascategorisedaseither omnivore,carnivore,herbivoreorpellet.Tissuetypewascategorisedaseither blood,whichincludedwholebloodandallitsconstituentssuchasplasma; keratinclaws;collagen;feathers;hair(includingwhiskers);kidney;liver;milk; andmuscle(withtissuesasappropriateforbirdsandmammals).Environment wasdefinedbasedonwhetheraspeciespredominantlyfedprimarilyina terrestrial(includingfreshwater)ormarineenvironments.Forfulldetailsonthe methodsused,includingsearchtermsanddatastandards,see(Caut,Anguloetal. 2009). Ascommonancestryamonggroupscanaffecttraitvariationweincluded phylogeneticinformationforbothbirdsandmammalsinourmodels.Rather thanbasingouranalysesonasinglephylogenetictree,wefollowedprevious approaches(Healy,Guillermeetal.2014,Healy2015),ofusingadistributionof treestoincorporatetheinherentuncertaintyinthephylogenies.Weextracted threetreesfromtheposteriordistributionofarecentbirdphylogenygenerated underaBayesianinferenceframework(Jetz,Thomasetal.2012),andusedthe mammaltreesconstructedby(Kuhn,Mooersetal.2011)wereeachindividual PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1950v3 | CC BY 4.0 Open Access | rec: 17 Apr 2017, publ: 17 Apr 2017 treecomprisesoneresolutionofthepolytomiesofapreviouslypublished supertreeandtheseasequivalenttoaBayesianposteriordistributionoftrees. Analysisofsourcesofvariation ToestimatevaluesofTDFwefittedmodelsusingBayesianphylogeneticmixed modelsfromtheMCMCglmmpackage(Hadfield2010).Separatemodelswere fittedforbothnitrogenandcarbonandalsoforbothAvesandMammaliadueto theuseofdistincttissuetypestomeasureTDFinbothgroups.Wefiteachmodel withtermsknownorexpectedtodetermineTDFincluding;foodsourceisotopic ratio;diettypeandenvironmenttypeasfixedtermsandtissuetypeandspecies levelvariationfittedasrandomterms.Toincludethenon-independence betweenspeciestraitsduetocommondecentweincludedphylogenyasa randomtermusingtheanimaltermintheMCMCglmmpackageandrunthese modelsoveradistributionofphylogenetictreesusingtheMultreepackage (GuillermeandHealy2014).Wedeterminedthenumberofiterations,thinning andtheburn-inperiodforeachmodelrunacrossalltreesusingdiagnosticsin thecodapackage(Plummer,Bestetal.2006)andwecheckedforconvergence betweenmodelchainsusingtheGelman-Rubinstatistic,thepotentialscale reductionfactor(PSR),withallmodelsrequiredtohaveaPSRbelow1.1(Brooks andGelman1998).FollowingtherecommendationsofHadfield(Hadfield2010), weusedanuninformativeinverse-Wishartdistribution(withvariance,V,setto 0.5andbeliefparameter,nu,setto0.002)andaparameterexpandedprior,with ahalf-Cauchydistribution(describedbytheparametersV.0.5,nu.1,theprior meanalpha.mu.0,andalpha.V.102,whichrepresentsthepriorstandard deviationwithascaleof10),fortherandomfactortoimprovemixingand decreaseautocorrelationamongiterations. Whileweincludeisotopicratioasafixedeffectinthemainanalysis,asitisfound tobeastrongpredictorofTDFinpreviousstudies(Caut,Anguloetal.2009),we alsoruneachmodelwithoutthefixedtermsoffoodsourceisotopicratioas informationrelatingtothisfactorisunlikelytobeavailableoutsideofcontrolled experiments.Thisresultedinfourmodels(CarbonforAvesandMammaliaand NitrogenforAvesandMammalia)usingthefullmodel PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1950v3 | CC BY 4.0 Open Access | rec: 17 Apr 2017, publ: 17 Apr 2017 1. TDF~Fixedterms:Sourceisotopicratio+Diettype+Environment Randomterms:Phylogeny+Tissuetype+Specieslevel andfoursimilarmodelswithoutincludingsourceisotopicratio. 2. TDF~Fixedterms:Diettype+Environment Randomterms:Phylogeny+Tissuetype+Specieslevel Usingthesemodels,wethenavailoftheabilitytoimputemissingvaluesina BayesianframeworkbyusingtheMCMCglmmpackagetoestimateTDFvalues fornewspecies(Hadfield2010). Analysis(Crossvalidation) TotesttheaccuracyofthismethodwecomparedestimatesofTDFcalculated usingBayesianimputationstovaluesmeasuredincontrolledexperiments.We madethesecomparisonsbyrunningmodelswereanobservedTDFvalueinthe datasetwasreplacedwithaNAcodinglabelwhichisthenestimatedimplicitly duringmodelfittingusingtheimputationmethoddescribedabove.Thiswas repeatedforeachvaluewithinthedatasetsothatanTDFestimatewas calculatedforeachindividualobservedTDFvaluewerethatwastheonly missingvalueinthemodel. TotestourmodelforscenarioswerenoTDFvaluesarepresentforanentire specieswealsosequentiallyreplacedallvaluesforeachspeciesinturnwiththe sameNAcodinglabelwithinthedataset.Henceinthespeciesreplacement analyseseachvalueisestimatedfromadatasetthatdoesnotcontainanyTDF estimatesforthatspecies.AllcodeisavailableaspartoftheFestRpackage (https://github.com/healyke/DEsiR). PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1950v3 | CC BY 4.0 Open Access | rec: 17 Apr 2017, publ: 17 Apr 2017 Results Overallourdatasetincludes328TDFvaluesandassociateddata(diettype,etc) for24speciesofmammalsand24birdspecies.Forcarbonthereare94TDF valuesfor21mammalspecies,and76TDFvaluesacross23birdspecies.For nitrogenthereare89valuesacross21mammalspeciesand69TDFvalues across24birdspecies. SourcesofTDFvariation Forbothelementsandtaxonomicclasses,theisotopicratioofthesourcehada negativeeffectontheTDFrangingfrom-0.2to-0.29(Table.1).Forboth elementsinbirds,butonlyfornitrogenisotoperatiosinmammals,TDFfrom terrestrialhabitatswerefoundtobelowerthanmarinehabitats(Table.1).Diet typeinmammalsshowedsignificantlylowercarbonTDFforpelletdiets,in comparisontocarnivorousdiets.Wealsoobservedsignificantlylowernitrogen TDFforherbivores,omnivoresandpelletdietsincomparisontocarnivorediets. Inbirdsonlyomnivorousdietswerefoundtohavesignificantlylowernitrogen TDFswithrespecttocarnivorousdiets. PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1950v3 | CC BY 4.0 Open Access | rec: 17 Apr 2017, publ: 17 Apr 2017 Table1.SummaryoffactorsaffectingTDFinAvesandMammaliaforboth CarbonandNitrogen.Estimatesforeffectsaremodalestimateswithlower5% confidenceintervalandhigher95%credibleintervals(CI).Fixedeffects estimatesinboldindicatethatthe95%credibleinterval(CI)doesnotcontain zero. Model Carbon Terms Aves Mammalia Estimate LowerCI UpperCI Estimate LowerCI UpperCI Fixed Terms Intercept -3.59 -7.12 -0.167 -2.55 -4.59 -0.43 Source13C -0.29 -0.47 -0.11 -0.20 -0.28 -0.13 DietType Herbivore -0.28 -2.08 1.56 -0.61 -1.58 0.44 Omnivore -1.01 -2.56 0.28 0.11 -0.71 0.99 Pellet -0.14 -1.83 1.50 -1.33 -2.41 -0.04 HabitatType Terrestrial -1.79 -3.42 -0.33 0.58 -1.15 2.07 Random Terms Phylogeny 0.01 0.00 0.87 0.08 0.00 2.83 TissueType 0.36 0.13 3.04 0.11 0.00 1.54 Specieslevel 0.83 0.31 2.63 0.24 0.00 1.97 Residuals 0.47 0.33 0.79 0.84 0.62 1.35 Nitrogen Aves Mammalia Estimate LowerCI UpperCI Estimate LowerCI UpperCI Fixed Terms Intercept 5.92 4.01 7.94 6.74 4.69 8.72 Source15N -0.24 -0.40 -0.07 -0.28 -0.40 -0.16 DietType Herbivore 0.022 -2.50 2.48 -1.81 -3.06 -0.68 Omnivore -1.44 -3.00 -0.13 -0.90 -1.82 -0.02 Pellet 0.44 -1.87 1.10 -1.48 -2.68 -0.18 HabitatType Terrestrial -1.36 -2.66 -0.22 -0.50 -2.18 0.90 Random Terms Phylogeny 0.19 0.00 2.02 0.26 0.00 2.55 TissueType 0.20 0.05 1.72 0.002 0.00 0.17 Specieslevel 0.12 0.00 1.22 0.06 0.00 1.10 Residuals 0.31 0.22 0.53 0.68 0.50 1.01 PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1950v3 | CC BY 4.0 Open Access | rec: 17 Apr 2017, publ: 17 Apr 2017 Theimportanceandeffectoftherandomtermsofphylogeny;tissuetype;species levelvariationandresidualvariation,variedacrosselementsandclass. Phylogenyaccountedfor1%and23%oftheresidualvariationinbirdsand6% and26%inmammalsforcarbonandnitrogenrespectively.Tissuetypewasa moreimportantterminbirdsaccountingfor22%and24%oftheresidual variationforcarbonandnitrogencomparedto9%and1%inmammals.Finally, withinspecieslevelvariationwasfoundtoaccountforasmuchas19%and50% ofresidualvariationforcarbonand12%and6%fornitrogeninmammalsand birds(Table1). Modelvalidation Theabilityofourmethodandtheassociatedpackage(DEsiR)toaccurately estimateTDFvalueswashigh.Acrossallanalysesthemodedifferencebetween estimatedandobservedvalueswasfoundtobe0.21forindividualreplacement and-0.15forspeciesreplacementforcarboninbirds(Figure1a);-0.15 (individual)and0.31(species)fornitrogeninbirds(Figure1b);-0.09 (individual)and0.09(species)forcarboninmammals(Figure1c);and0.15 (individual)and0.22(species)nitrogeninmammals(Figures1d). PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1950v3 | CC BY 4.0 Open Access | rec: 17 Apr 2017, publ: 17 Apr 2017 Bird Carbon TDF Figure1.aTDFestimatesforCarbonforbirdsinbothindividualandspecies replacementanalyses.Blackdotsrepresentmodelestimates,blackbars represent50%CIanddashedbarsrepresent95%CI.Reddotsindicateobserved TDFderivedfromreportedcontrolleddietexperiments. PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1950v3 | CC BY 4.0 Open Access | rec: 17 Apr 2017, publ: 17 Apr 2017 Bird Nitrogen TDF Figure1.bTDFestimatesfornitrogenforbirdsinbothindividualandspecies replacementanalyses.Blackdotsrepresentmodelestimates,blackbars represent50%CIanddashedbarsrepresent95%CI.Reddotsindicateobserved TDFderivedfromreportedcontrolleddietexperiments. PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1950v3 | CC BY 4.0 Open Access | rec: 17 Apr 2017, publ: 17 Apr 2017 Mammal Carbon TDF Figure1.cTDFestimatesforcarbonformammalsinbothindividualandspecies replacementanalyses.Blackdotsrepresentmodelestimates,blackbars represent50%CIanddashedbarsrepresent95%CI.Reddotsindicateobserved TDFderivedfromreportedcontrolleddietexperiments. PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1950v3 | CC BY 4.0 Open Access | rec: 17 Apr 2017, publ: 17 Apr 2017 Mammal Nitrogen TDF Figure1.dTDFestimatesfornitrogenformammalsinbothindividualand speciesreplacementanalyses.Blackdotsrepresentmodelestimates,blackbars represent50%CIanddashedbarsrepresent95%CI.Reddotsindicateobserved TDFderivedfromreportedcontrolleddietexperiments. Whilethegeneralaccuracyoftheseestimateswashightheseestimatesvaried acrossspecieswithunderestimatesaslowas-4.11inLarusheermanniand overestimatesashighas4.63inLarusdelawarensis(Figure1a).Theuncertainty associatedwithTDFestimateswaslowerintheindividualreplacementanalysis incomparisontothespeciesanalysiswith95%oftheestimatesfallingwithin PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1950v3 | CC BY 4.0 Open Access | rec: 17 Apr 2017, publ: 17 Apr 2017 theintervalsof-1.71and1.70oftheindividualanalysisandbetweenthe intervalsof-2.57and2.65forthespeciesintervals(Figure2). Aves 4 -4 -2 0 2 4 -2 0 2 4 0.30 0.10 0.00 -4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 0.10 0.10 0.00 0.00 0.00 0.05 0.10 0.10 0.20 0.20 0.30 0.10 0.00 -4 0.20 2 0.20 0 0.00 Density 0.20 0.30 0.20 0.1 0.00 -2 0.15 -4 Nitrogen Carbon 0.40 0.40 0.30 0.20 Density 0.10 0.00 Individual replacement Species replacement Mammalia Nitrogen Carbon Difference between Estimated and Observed TDF 50% CI = 95% CI = 99% CI = Figure2.Densityhistogramsofthedifferencebetweenestimatedvaluesusing Bayesianimputationandobservedvaluesfromexperimentallycontrolled dietarystudies.Thetoprowgivesdifferencesforestimatescalculatedfor individualreplacementsforbothAvesandMammaliagroups,andCarbonand Nitrogenelements.Thebottomrowgivesdifferencesforthespecies replacementanalysis.Greenbarsrepresent50%,redbars95%andbluebars 99%confidenceintervals. Theaccuracyanduncertaintyinmodelsrunwithouttheinclusionofsource isotopicratioasafixedfactorwithamodedifferencebetweenestimatedand observedvaluesfoundtobe0.19forindividualreplacementand0.05forspecies replacementforcarboninbirds;-0.14(individual)and0.16(species)for nitrogeninbirds;0.23(individual)and0.01(species)forcarboninmammals; and0.003(individual)and0.42(species)nitrogeninmammals. SimilartothemainanalysistheuncertaintyassociatedwithTDFestimatesin modelswithoutsourceisotopicratioincludedwaslowerintheindividual replacementanalysisincomparisontothespeciesanalysiswith95%ofthe PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1950v3 | CC BY 4.0 Open Access | rec: 17 Apr 2017, publ: 17 Apr 2017 estimatesfallingwithintheintervalsof-1.96and1.94oftheindividualanalysis andbetweentheintervalsof-2.72and2.90forthespeciesintervals(Figure3). Aves Individual replacement Density Species replacement Density Carbon Mammalia Nitrogen Carbon Nitrogen Difference between Estimated and Observed TDF 50% CI = 95% CI = 99% CI = Figure3.Densityhistogramsofthedifferencebetweenestimatedvaluesusing Bayesianimputationwithoutsourceisotopicratioincludedandobservedvalues fromexperimentallycontrolleddietarystudies.Thetoprowgivesdifferencesfor estimatescalculatedforindividualreplacementsforbothAvesandMammalia groups,andCarbonandNitrogenelements.Thebottomrowgivesdifferencesfor thespeciesreplacementanalysis.Greenbarsrepresent50%,redbars95%and bluebars99%confidence Discussion Here,wepresentDEsiRanapproachfortheestimationofunknowncarbonand nitrogenTrophicDiscriminationFactor(TDF)valuesinbirdandmammal species.Ourapproachbuildsonpreviousstudiesthatidentifiedvarioussources ofvariationinTDF(DeNiroandEpstein1978,DeNiroandEpstein1981,Caut, Anguloetal.2009)(McCutchan,Lewisetal.2003,Olive,Pinnegaretal.2003) andextendsthembyincludingadditionalstudiesmeasuringTDFandby incorporatingimportantadditionalsourcesofvariationincludingphylogenetic structureandtheerrorassociatedwithmeasurementswithinaspecies.Ofthe additionalsourcesofvariationthatweinvestigated,phylogenywasfoundtobe PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1950v3 | CC BY 4.0 Open Access | rec: 17 Apr 2017, publ: 17 Apr 2017 particularlyimportantfornitrogenTDFforbothbirdsandmammalsbut accountedforlittlevariationforcarbonTDFs.Thissuggeststhatwhileclosely relatedspeciesarelikelytoshareasimilarnitrogenTDFs,nearest-neighbour estimatesarenotasuitablemethodforestimatingcarbonTDFs.Incontrast,a largeproportionofthevariationincarbonTDFestimatesforbirds,andtoa lesserextentinmammals,wasattributedtovariationamongtissuesbutalsowas simplyleftasresidualerrorforspeciesacrossstudies(i.e.theerrorassociated foraspeciesaftercontrollingfortissuetype,diettypeetc).Foraging environmentwasasourceofsignificantvariationforbothcarbonandnitrogen TDFestimatesinbirds,andfornitrogenestimatesinmammals,withspecies foraginginterrestrialenvironmentsexhibitinglowerTDFvaluesthanthosein marineenvironments.Whileenvironmenthasbeenfoundtobeasignificant factorinpreviousstudies(Caut,Anguloetal.2009)forstableisotoperatios, theseeffectshavenotbeenpreviouslyrecordedfornitrogenTDFs.Furtherdata willallowformoredetailedcomparisonoftheeffectsofenvironmentswiththe terrestrialbiome,mainlyfreshwaterenvironments. IncomparisontopreviouslydevelopedapproachesforestimatingTDF(Caut, Anguloetal.2009),ourmodelsallowthephylogeneticrelationshipofspecies withavailabledatatoinfluenceTDFestimationalongwithothersourcesofTDF variation.Theaccuracyofthismethodwasvalidatedboththroughleave-one-out crossvalidationreplacementofsingleobservationsandreplacementofwhole species.Asexpectedtheaccuracyofsingleobservationreplacementwashigher thanwholespeciesreplacementowingtotheadditionallossofinformationin thespeciesremovalprocess.However,theprimarydifferencebetweenthe performancesofthetwovalidationmodelsisasonewouldexpect.Ifyou estimateaspeciesthatispresentinthedatasetusedtofitthemodel(i.e.the speciesremovalvalidation)thentheestimatedTDFismoreprecisethanifyou estimateaspeciesthatisnotpresentinthedatasetusedtofitthemodel(i.e.the speciesremovalvalidation). Allmodelsarebutanapproximationoftherealworldandareonlyasgoodas thedataavailable;thus,underourapproach,TDFestimatesforsomespeciesare PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1950v3 | CC BY 4.0 Open Access | rec: 17 Apr 2017, publ: 17 Apr 2017 likelytobemoreaccuratethanothers.Forexample,inoursinglespecies replacementmodel,ourestimatesofcarbonTDFfortwoNorthAmericangulls, LarusdelawarensisandL.heermanni,areamongtheleastaccurateinthemodel. Thismayreflectpeculiaritiesin,oralackofdetaileddatarelatingto,theecology andphysiologyofthesespecies,suchasthehighlevelofterrestrialforagingin manygullspeciesorthephysiologicalprocessofsaltexcretionusedbythese species(Douglas1970).Nonetheless,asmoredataonTDFbecomesavailable, ourapproachtoTDFestimationwillbecomeincreasinglypowerful. Irrespectiveofimprovementsinaccuracy,theabilitytocalculateanappropriate errorassociatedwiththemcaninturnbeappliedtocurrentBayesianisotope mixingmodels(MooreandSemmens2008,Parnell,Ingeretal.2010),which encourageinclusionofallsourcesofuncertaintysoastopropagatethis uncertaintytowardsthefinaldietaryortrophicestimates(Phillips,Ingeretal. 2014).Ourapproachalsoallowsforflexibilityinthemodelappliedtoestimate TDFvalues,whichisparticularlyimportantasmanyofthefactorsinfluencing TDFarestilldebated,suchastheisotopicratioofthesourceitself(Phillips,Inger etal.2014).Similarly,whileourapproachiscurrentlyconfinedtobirdsand mammals,itcanalsoeasilybeadaptedandextendedtoothertaxonomicgroups asfurtherdataontheTDFand/orphylogeneticrelationshipsofthetaxabecome availableandmoreinformationfromcontrolleddietstudiesonbothnewspecies aswellasthosealreadyincludedinthedataset. WeprovideRcode(https://github.com/healyke/DEsiR)fortheestimationof carbonandnitrogentrophicenrichmentfactorsforanybirdormammalspecies, whichcaneasilyfitintotheinputofcurrentstableisotopemixingmodelsand alsobeextendedtoothertaxonomicgroupsinthefuture.Byincorporating phylogeny,ecologyandtheerrorassociatedwithTDFestimates,ourapproach canprovidemoreaccuratedietaryproportionestimatesalongwithamore honestrepresentationoftheirprecision.Akeyfeatureofourmethodisthatit providesaframeworkwhichlendsitselftorefinementandimprovedestimates asmoreTDFdatafromexperimentalstudiesbecomesavailable. PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1950v3 | CC BY 4.0 Open Access | rec: 17 Apr 2017, publ: 17 Apr 2017 References Bodey,T.W.,etal.(2014)."Speciesversusguildleveldifferentiationrevealed acrosstheannualcyclebyisotopicnicheexamination."JournalofAnimal Ecology83(2):470-478. Bond,A.L.andA.W.Diamond(2011)."RecentBayesianstable-isotopemixing modelsarehighlysensitivetovariationindiscriminationfactors."Ecological Applications21(4):1017-1023. Brooks,S.P.andA.Gelman(1998)."Generalmethodsformonitoring convergenceofiterativesimulations."Journalofcomputationalandgraphical statistics7(4):434-455. Caut,S.,etal.(2009)."Variationindiscriminationfactors(Δ15NandΔ13C):the effectofdietisotopicvaluesandapplicationsfordietreconstruction."Journalof AppliedEcology46(2):443-453. DelRio,C.M.andB.O.Wolf(2005)."Mass-balancemodelsforanimalisotopic ecology."Physiologicalandecologicaladaptationstofeedinginvertebrates:141174. DeNiro,M.J.andS.Epstein(1978)."Influenceofdietonthedistributionof carbonisotopesinanimals."Geochimicaetcosmochimicaacta42(5):495-506. DeNiro,M.J.andS.Epstein(1981)."Influenceofdietonthedistributionof nitrogenisotopesinanimals."Geochimicaetcosmochimicaacta45(3):341-351. Douglas,D.S.(1970)."Electrolyteexcretioninseawater-loadedherringgulls." AmericanJournalofPhysiology219:534-539. Fagan,W.F.,etal.(2013)."Phylogeneticpredictionofthemaximumpercapita rateofpopulationgrowth."ProceedingsoftheRoyalSocietyofLondonB: BiologicalSciences280(1763):20130523. Fernandes,R.,etal.(2014)."Foodreconstructionusingisotopictransferred signals(FRUITS):aBayesianmodelfordietreconstruction."PloSone9(2): e87436. France,R.andR.Peters(1997)."Ecosystemdifferencesinthetrophic enrichmentof13Cinaquaticfoodwebs."CanadianJournalofFisheriesand AquaticSciences54(6):1255-1258. PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1950v3 | CC BY 4.0 Open Access | rec: 17 Apr 2017, publ: 17 Apr 2017 Greer,A.L.,etal.(2015)."Simplewaystocalculatestableisotopediscrimination factorsandconvertbetweentissuetypes."MethodsinEcologyandEvolution 6(11):1341-1348. Guillerme,T.andK.Healy(2014)."mulTree:apackageforrunningMCMCglmm analysisonmultipletrees."(10.5281/zenodo.12902). Hadfield,J.D.(2010)."MCMCmethodsformulti-responsegeneralizedlinear mixedmodels:theMCMCglmmRpackage."JournalofStatisticalSoftware33(2): 1-22. Healy,K.(2015)."Eusocialitybutnotfossorialitydriveslongevityinsmall mammals."Proc.R.Soc.B282(1806):20142917. Healy,K.,etal.(2014)."Ecologyandmode-of-lifeexplainlifespanvariationin birdsandmammals."ProceedingsoftheRoyalSocietyofLondonB:Biological Sciences281(1784):20140298. HopkinsIII,J.B.andJ.M.Ferguson(2012)."Estimatingthedietsofanimalsusing stableisotopesandacomprehensiveBayesianmixingmodel."PloSone7(1): e28478. Hussey,N.E.,etal.(2014)."Rescalingthetrophicstructureofmarinefoodwebs." EcologyLetters17(2):239-250. Jetz,W.andR.P.Freckleton(2015)."Towardsageneralframeworkfor predictingthreatstatusofdata-deficientspeciesfromphylogenetic,spatialand environmentalinformation."PhilosophicalTransactionsoftheRoyalSocietyof LondonB:BiologicalSciences370(1662):20140016. Jetz,W.,etal.(2012)."Theglobaldiversityofbirdsinspaceandtime."Nature 491(7424):444-448. Kuhn,T.S.,etal.(2011)."Asimplepolytomyresolverfordatedphylogenies." MethodsinEcologyandEvolution2(5):427-436. McCutchan,J.H.,etal.(2003)."Variationintrophicshiftforstableisotoperatios ofcarbon,nitrogen,andsulfur."Oikos102(2):378-390. Moore,J.W.andB.X.Semmens(2008)."Incorporatinguncertaintyandprior informationintostableisotopemixingmodels."EcologyLetters11(5):470-480. Olive,P.J.,etal.(2003)."Isotopetrophic‐stepfractionation:adynamic equilibriummodel."JournalofAnimalEcology72(4):608-617. Parnell,A.C.,etal.(2010)."Sourcepartitioningusingstableisotopes:coping withtoomuchvariation."PloSone5(3):e9672. PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1950v3 | CC BY 4.0 Open Access | rec: 17 Apr 2017, publ: 17 Apr 2017 Peterson,B.J.andB.Fry(1987)."Stableisotopesinecosystemstudies."Annual reviewofecologyandsystematics:293-320. Phillips,D.L.andJ.W.Gregg(2003)."Sourcepartitioningusingstableisotopes: copingwithtoomanysources."Oecologia136(2):261-269. Phillips,D.L.,etal.(2014)."Bestpracticesforuseofstableisotopemixing modelsinfood-webstudies."CanadianJournalofZoology92(10):823-835. Plummer,M.,etal.(2006)."CODA:Convergencediagnosisandoutputanalysis forMCMC."Rnews6(1):7-11. Post,D.M.(2002)."Usingstableisotopestoestimatetrophicposition:models, methods,andassumptions."Ecology83(3):703-718. Robbins,C.T.,etal.(2005)."Theeffectofdietaryproteinqualityonnitrogen isotopediscriminationinmammalsandbirds."Oecologia144(4):534-540. Schrodt,F.,etal.(2015)."BHPMF–ahierarchicalBayesianapproachtogap‐ fillingandtraitpredictionformacroecologyandfunctionalbiogeography." GlobalEcologyandBiogeography24(12):1510-1521. Swenson,N.G.(2014)."Phylogeneticimputationofplantfunctionaltrait databases."Ecography37(2):105-110. PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1950v3 | CC BY 4.0 Open Access | rec: 17 Apr 2017, publ: 17 Apr 2017
© Copyright 2025 Paperzz