steady state impacts in inverse model parameter optimization Carvalhais, N., Reichstein, M., Seixas, J., Collatz, G.J., Pereira, J.S., Berbigier, P., Carrara, A., Granier, A., Montagnani, L., Papale, D., Rambal, S., Sanz, M.J., and Valentini, R.(2008), Implications of the carbon cycle steady state assumption for biogeochemical modeling performance and inverse parameter retrieval, Global Biogeochem. Cycles, 22, GB2007, doi:10.1029/2007GB003033. motivation / goals • CASA model parameter optimization • spin-up routines force soil C pools estimates • impacts of the steady state in: – model performance – parameter estimates / constraints • propagation of C fluxes estimates uncertainties for the Iberian Peninsula the CASA model NEP GPP Ra Rh NPP APAR APAR fAPAR PAR * T W p Rh Ci k i Ws Ts (1 M ) i Aws Q10 * TOpt Bw Potter et al., 1993 approach to relax the steady state approach • inclusion of a parameter that relaxed the steady state approach: η Cns = Css ∙ η Fix Steady State Aws Q10 * TOpt Bw Relaxed Steady State 1 1 1 experiment design • significance of each parameter: – removing one parameter at a time; • alternatives to η: – replacing by : • soil C turnover rates; • extra parameters on NPP and Rh temperature sensitivity. • Levenberg-Marquardt least squares optimization site selection and data • CARBOEUROPE-IP: – 10 Sites • optimization constraints: NEP • model drivers: – site meteorological data; – remotely sensed fAPAR and LAI; – different temporal resolutions IT-Non [sink: 542gC m-2 yr-1] adding η effect of η in optimization determinants of parameter variability: ANOVA Bw T * opt 2 4 2 17 site 39 33 40 parameter vector 6 17 9 39 2 temporal resolution 33 site x parameter vector 5 16 Q 9 A 10 FST ws 2 4 4 site x temporal resolution 28 parameter vector x temporal resolution 27 7 1 6 4 0 8 12 6 11 19 56 0 55 PRM T MR 83 FST *PRM FST *T MR PRM*T MR what drives η? r2: 0.76; α < 0.001 model performance improvements model performance in relaxed > fixed steady state assumptions. differences in parameter estimates and constraints relaxed relaxed P/P ↑NPP SE/SE fixed ε* Topt Bwε Q10 Aws ↓Rh fixed ε* Topt Bwε Q10 Aws total soil C pools measurements relaxed fixed steady state approach impacts • model performance – relaxed > fixed • parameter estimates – biases • parameter uncertainties – relaxed < fixed • soil C pools estimates – relaxed closer to measurements propagating parameters / uncertainties spatial simulations • Iberian Peninsula • optimized parameters per site: – optimization: naïve bootstrap approach • no assumption on parameters distribution – GIMMS NDVIg : 8km, biweekly; • parameter propagation per PFT: – estimating NEP / NPP / Rh spatial impacts : NPP 1991 relaxed fixed relaxed - fixed seasonality : NPP : IP relaxed versus fixed iav : NEP : IP relaxed versus fixed seasonality and iav : IP inter annual variability var. NPP Min max seasonal amplitude min max uncertainties min max -9% 62% -11% 53% -60% -2% Rh -15% 74% -39% 131% -60% -2% NEP -10% 63% -10% 91% -60% 6% (relax – fix) / fix remarks • biases in optimized parameters lead to significant differences in flux estimates: seasonality and iav • uncertainties propagation show significant reductions under relaxed steady state approaches • impacts in data assimilation schemes …
© Copyright 2026 Paperzz