Introduction to Genetic Algorithm Principle: survival-of-the-fitness Characteristics of GA Robust Error-tolerant Flexible When you have no idea about solving problems… Population Crossover Crossover Mutation Fitness Selection Mutation ........... Component of Genetic Algorithm Representation Genetic operations: Crossover, mutation,inversion, as you wish Selection Elitism, total, steady state,…as you wish Fitness Problem dependent Everybody has different survival approaches. How to implement a GA ? Representation Fitness Operators design Selection strategy Example(I) Maximize f ( x) (2 x 4 x ) sin( x) cos( x) tan( x) 2 3 10 x 10 -500 -1000 -1500 -2000 -2500 9.8 9.2 8 8.6 7.4 6.8 6.2 5.6 5 4.4 3.8 3.2 2.6 2 1.4 0.8 0.2 -1 -0 .4 -1 .6 -2 .2 -2 .8 -4 -3 .4 -4 .6 -5 .2 -5 .8 -7 -6 .4 -7 .6 -8 .2 -1 0 -9 .4 -8 .8 2500 2000 1500 1000 500 0 Example(I): Representation Standard GA binary string x = 5, x = 101 x = 3.25 x = 011.1 … Something noticeable Length is predefined. Not the only way. chromosome gene Example(I): Fitness function In this case, it is known already Example(I): Genetic Operator Standard crossover (one-point crossover) Example(I): Genetic Operator Standard mutation (point mutation) Randomly Randomly Example(I): Selection Standard selection (roulette wheel) Population Crossover Crossover Mutation Fitness Selection Mutation ........... -500 -1000 -1500 -2000 -2500 9.8 9.2 8 8.6 7.4 6.8 6.2 5.6 5 4.4 3.8 3.2 2.6 2 1.4 0.8 0.2 -1 -0 .4 -1 .6 -2 .2 -2 .8 -4 -3 .4 -4 .6 -5 .2 -5 .8 -7 -6 .4 -7 .6 -8 .2 -1 0 -9 .4 -8 .8 2500 2000 1500 1000 500 0 Example(II) Minimize n f ( x) xi sin( xi ) i 1 500 xi 500 繪圖中 嘿嘿~~畫不出來 Example(II): Representation Standard GA binary string Too complex Intuitively Real numbered coding ( x1 , x2 ,..., xn ) (18.5, 13, ..., 9.77) Example(II): Fitness function In this case, it is known already Example(II): Genetic Operator Standard crossover (multi-point crossover) 0.3, 0.7, 1.2, 3.5, -9.87, 2.334, 34 0.1, 0.3, -1 , 2.5, 1.33, 0.434, 9 0.1, 0.3, 1.2, 3.5, 1.33, 0.434, 9 0.3, 0.7, -1 , 2.5, -9.87, 2.334, 34 Example(II): Genetic Operator Standard mutation (multi-point mutation) 0.3, 0.7, 1.2, 3.5, -9.87, 2.334, 34 Cauchy Gaussian 0.3, 0.7, 0.9, 3.5, -9.87, 2.557, 34 Example(II): Selection Standard selection (rank selection) Comparing Two Selection Population Crossover Crossover Mutation Fitness Selection Mutation ...........
© Copyright 2026 Paperzz