Question 1

King Saud University
Science and Medical Studies Section for
girls
College of Science
Department of Mathematics
Math 151
First Term 1433-34H
Final Exam
3 Hours
Name:
Student No.:
Section No.:
Staff member name:
Question
No
Mark
1
2
3
4
Total
Question 1
Choose the correct answer and write it in the following table:
Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Answer
1) The compound propositions ((๐’‘ โ†’ ๐’“) โˆจ (๐’“ โ†’ ๐’’)) โˆง ๐’“ and the proposition r
are logically equivalent
a) true
b) false
2) The compound proposition [(๐’‘ โˆง ๐’’) โˆจ (๐’‘ โ†’ ๐’“) โˆจ (๐’’ โ†’ ๐’“)] โ†’ ๐’“ is
a) a tautology
b) a contradiction
c) a
contingency
3) The proposition โ€œ โˆ€ ๐’™, ๐’™๐Ÿ < 4 ๐‘Ž๐‘›๐‘‘ ๐‘ฅ = 1, ๐‘กโ„Ž๐‘’๐‘› ๐’™๐Ÿ + ๐Ÿ = ๐Ÿ โ€ is
a) true
b) false
4) Let ๐‘น be the equivalent relation โ€œ๐’‚๐‘น๐’ƒ โ‡” ๐’‚ โ‰ก ๐’ƒ(๐’Ž๐’๐’… ๐Ÿ•)โ€. Then
a) [๐Ÿ๐Ÿ’] = [๐Ÿ•].
b) [๐Ÿ“] = {โ€ฆ โˆ’ ๐Ÿ๐Ÿ“, โˆ’๐Ÿ“, ๐ŸŽ, ๐Ÿ“, ๐Ÿ๐Ÿ“, โ€ฆ ).
c) Both (a) and (b) are true.
c) None of the previous.
5) Which of the next relations is a partial order relation on ๐’+ ?
(a) ๐’‚๐‘น๐’ƒ โ‡” ๐’‚ โ‰ก ๐’ƒ(๐’Ž๐’๐’… ๐Ÿ๐ŸŽ).
(b) ๐’‚๐‘น๐’ƒ โ‡” ๐’‚ |๐’ƒ , ( ๐’‚ ๐’…๐’Š๐’—๐’Š๐’…๐’†๐’” ๐’ƒ). .
(c) ๐’‚๐‘น๐’ƒ โ‡” ๐’‚ > ๐‘.
1
6) The relation represented by the following directed graph is
a)reflexive
d) transitive.
b) symmetric.
c) antisymmetric.
e) non of the previous.
7) The diagonal relation ๐šซ is a partial order relation and an equivalence
relation at the same time.
a) True
b) False
ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…
ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…
ฬ…) + ๐’š
ฬ…) is a Boolean function, then ๐’‡(๐’™, ๐’š, ๐’›) is
8) If ๐’‡(๐’™, ๐’š, ๐’›) = ((๐’™
+๐’š
equivalent to
a) ๐ŸŽ
d) None of the previous.
ฬ…
b) ๐’™๐’š
ฬ…+๐’š
ฬ…
c) ๐’™๐’š
9) If ๐’‡ ๐’Š๐’” as in (8), then the dual of ๐’‡ is
ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…
ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…
ฬ…) + ๐’š
ฬ…
ฬ…)๐’š
ฬ…)
a) (๐’™
+๐’š
b) ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…
((๐’™๐’š
ฬ…๐’š + ๐’š
๐’™
c)
d) None of the previous.
10) Assume that ๐’™, ๐’š, and ๐’› represent Boolean variables, then ((๐’™ + ๐’›) +
๐’š)๐’™ + ฬ…
๐’™ = ๐Ÿ.
a) true
b) false
11) There is a simple graph with six vertices, whose degree sequence is 12, 2, 2,
3, 5, 4.
a) true
b) false
2
12) The graph D is bipartite
a) True
b) False
13) The graph ๐‘ฒ๐’ has
a) ๐’ vertices and ๐’๐Ÿ edges.
c) ๐’ vertices and ๐’(๐’ โˆ’ ๐Ÿ) edges.
b) ๐Ÿ๐’ vertices and ๐’๐Ÿ edges.
14) A subgraph of a simple graph is simple.
a) true
b) false
15) If G is a planar connected graph with 20 vertices, each of degree 3, then G
has 12 regions.
a) true
b) false
16) There is a connected simple planar graph with 10 vertices and 16 edges
and 8 regions.
a) true
b) false
3
Question 2
Prove the following statements:
1) โˆผ (๐’‘ โ†” ๐’’) โ‰ก ๐’‘ โ†”โˆผ ๐’’ .
2) โˆš๐Ÿ โˆ‰ โ„š.
ฬ… + ๐’ƒ๐’„ = ๐ŸŽ then ๐’‚
ฬ… (๐’ƒ +
3) Let ๐‘บ be a Boolean algebra, and ๐’‚, ๐’ƒ โˆˆ ๐‘บ such that ๐’‚
๐’„) = ๐Ÿ.
4
4) Let ๐‘ฟ โ‰  โˆ…. Define on โ„˜(๐‘ฟ) the next operations:
๐‘จ+๐‘ฉ=๐‘จโˆช๐‘ฉ
๐‘จ. ๐‘ฉ = ๐‘จ โˆฉ ๐‘ฉ
๐‘จโ€ฒ = ๐‘ฟ โˆ’ ๐‘จ
๐ŸŽ=โˆ…
๐Ÿ = ๐‘ฟ.
โ€ฒ
Then, (๐‘ฟ, +, . , , ๐ŸŽ, ๐Ÿ) is a Boolean algebra.
5) Let ๐‘ฎ be a simple connected planar graph with 5 vertices then |E| โ‰ค ๐Ÿ—.
6) This graph is planar.
5
Question 3
I)
Let ๐’‚๐ŸŽ = ๐Ÿ, ๐’‚๐Ÿ = ๐Ÿ, ๐’‚๐’ = ๐’‚๐’โˆ’๐Ÿ + ๐’‚๐’โˆ’๐Ÿ for all ๐’ โ‰ฅ ๐Ÿ. Prove by using
the second principle of mathematical induction that
๐’‚๐’ โ‰ค ๐Ÿ๐’ for all ๐’ โ‰ฅ ๐ŸŽ.
II)
Are the two graphs isomorphic?
6
III)
a) Draw the graph ๐‘ฒ๐Ÿ‘,๐Ÿ’
b) Prove that ๐‘ฒ๐Ÿ‘,๐Ÿ’ is not a planar graph.
IV) State the Euler formula for a connected simple graph.
V) If G is a connected graph with 12 regions and 20 edges, then G has
________ vertices.
7
Question 4
Use Karnaugh maps (K-maps) to simplify the following Boolean function
ฬ… +๐’™
ฬ…๐’š
ฬ…๐’› + ๐’š๐’› ,
๐’‡(๐’™, ๐’š, ๐’›) = ๐’™๐’š
and then draw the minimal โ€œandโ€ and โ€œorโ€ circuit. (โ€ซ)ุดุจูƒุฉ ุนุทู ูˆ ูุตู„ ุฃุตุบุฑูŠุฉโ€ฌ
Good Luck
8